Dipcoin
Audit Report

G MOVEBIT

contact@bitslab.xyz https://twitter.com/movebit_

Wed Aug 13 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Dipcoin Audit Report

1 Executive Summary

1.1 Project Information

Description

Type

Auditors

Timeline

Languages

Platform

Methods

Source Code

Commits

A smart contract is designed to support Spot AMM
(Automated Market Maker) swaps and perpetual contracts,
enabling users to trade directly on the blockchain with high
throughput and low latency.

DEX

MoveBit

Fri Aug 01 2025 - Wed Aug 13 2025

Move

Sui

Architecture Review, Unit Testing, Manual Review

https://github.com/dipcoinlab/dipcoin-amm

a65b036f4db46c4a4d736c65500ae068ce9adabb
e831b242e265b25ad0b9368a323cb4523ebd854d

1/25

https://github.com/dipcoinlab/dipcoin-amm
https://github.com/dipcoinlab/dipcoin-amm/tree/a65b036f4db46c4a4d736c65500ae068ce9ada6b
https://github.com/dipcoinlab/dipcoin-amm/tree/e831b242e265b25ad0b9368a323cb4523ebd854d

1.2 Files in Scope

The following are the SHAT hashes of the original reviewed files.

ID

MAT

ROU

EVE

COR

COM

CON1

MAN

File

sources/math.move

sources/router.move

sources/event.move

sources/core.move

sources/compa rator.move

sources/control.move

sources/manage.move

2/25

SHA-1 Hash

5e78a120e82dcbaab52ac1e7fddach
90e197e49fc

5c485459e5bab453e5f70c30baf75
6a1917a21cd

668b09b1f945634b52e065eadecO
29078fod7de7

b60dd6911442293ad525bf759¢58
5d18bf292fd3

2481b46e06c921ac9d0e8caaefla3
a43790bb4d6

51b349993d0b38dec579e5f108a0
acc7909b4133

40fabbbe6742cdf4684c9f25328a0a
eb78a070a2

1.3 Issue Statistic

Item Count Fixed Acknowledged
Total 3 3 0
Informational 1 1 0
Minor 1 1 0
Medium 1 1 0
Major 0 0 0

Critical 0 0 0

3/25

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

e Transaction-ordering dependence

e Timestamp dependence

¢ Integer overflow/underflow by bit operations
e Number of rounding errors

e Denial of service / logical oversights

e Access control

e Centralization of power

e Business logic contradicting the specification
e Code clones, functionality duplication

e (Gasusage

e Arbitrary token minting

e Unchecked CALL Return Values

e The flow of capability

e Witness Type

4/25

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process
e Carry out relevant security tests on the testnet or the mainnet;

e Ifthere are any questions during the audit process, communicate with the code owner
in time. The code owners should actively cooperate (this might include providing the
latest stable source code, relevant deployment scripts or methods, transaction
signature scripts, exchange docking schemes, etc.);

e The necessary information during the audit process will be well documented for both
the audit team and the code owner in a timely manner.

5/25

2 Summary

This report has been commissioned by Dipcoin Team to identify any potential issues and

vulnerabilities in the source code of the Dipcoin smart contract, as well as any contract

dependencies that were not part of an officially recognized library. In this audit, we have

utilized various techniques, including manual code review and static analysis, to identify

potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

CON-1

COR-1

MAN-1

Title Severity

Repeat Settings will Cause Informational
Unnecessary Gas Consumption

Incorrect Medium
min_add_liquidity_lp_amount

Check Does Not Match Settings

Incorrect Verification Resulted in Minor
Temporary Asset Freezing

6/25

Status

Fixed

Fixed

Fixed

3 Participant Process

Here are the relevant actors with their respective abilities within the Dipcoin Smart Contract

|. Core Module Description

1. control.move
o Admin permission control entry
o Pool creation and management
o Protocol fee control
2. router.move
o Add/remove liquidity
o User trading entry
o Token exchange routing
3. core.move
o Core trading logic implementation
o Liquidity calculation
o Fee handling
4. manage.move
o Global configuration management
o Pool status management
o Permission verification
5. math.move

o AMM mathematical calculations

7125

o Slippage protection
o Liquidity calculation
6. comparator.move
o Token sorting comparison

o LPtoken naming

Il. Key Admin Permission Methods
1. create Trading Pool (create_pool_by_admin_cap)

sequenceDiagram
participant Admin
participant Control
participant Manage
participant Comparator

Admin->>Control: create_pool_by_admin_cap<X,Y>(AdminCap)
Control->>Manage: check_version

Control->>Manage: check_is_normal
Control->>Comparator: is_order<X,Y>
alt X<y
Control->>Manage: create_pool<X,Y>
elseY <X
Control->>Manage: create_pool<Y,X>
end
Manage-->>Control: (pool_address, [p_name, fee_rate)
Control->>Control: emit(CreatedPoolEvent)

2. Emergency Pause/Resume (pause/resume)

sequenceDiagram
participant Admin

participant Control

participant Manage

8/25

Admin->>Control: pause(AdminCap)
Control->>Manage: check_version
Control->>Manage: has_paused
Control->>Manage: pause

Note over Manage: Set has_paused = true

Admin->>Control: resume(AdminCap)
Control->>Manage: check_version
Control->>Manage: has_paused
Control->>Manage: resume

Note over Manage: Set has_paused = false

3. Fee Rate Control (control_protocol_fee_switch/modify_fee_rate)

sequenceDiagram
participant Admin
participant Control
participant Manage

Admin->>Control: control_protocol_fee_switch(AdminCap, is_open)
Control->>Manage: check_version

Control->>Manage: check_is_normal

Control->>Manage: control_protocol_fee_switch

Note over Manage: Update protocol fee status

Admin->>Control: modify_fee_rate<X,Y>(AdminCap, new_rate)
Control->>Manage: check_version

Control->>Manage: check_is_normal

Control->>Manage: modify_fee_rate

Note over Manage: Update pool fee rate

lll. Trading Related Methods

1. Add Liquidity (add_liquidity)

sequenceDiagram
participant User

participant Router
participant Core
participant Math
participant Manage

User->>Router: add_liquidity<X,Y>
Router->>Manage: check_version
Router->>Manage: check_is_normal
Router->>Core: add_liquidity

Core->>Math: calc_optimal_coin_values

Note over Math: Calculate optimal addition ratio
Core->>Math: sqrt(optimal_x * optimal_y)

Note over Math: Calculate initial liquidity for first addition
Core->>Manage: increase_supply

Note over Core: Mint LP tokens

Core-->>Router: (LP tokens, actual_x, actual_y)
Router->>Router: emit(AddLiquidityEvent)

2. Remove Liquidity (remove_liquidity)

sequenceDiagram
participant User
participant Router
participant Core
participant Math
participant Manage

User->>Router: remove_liquidity<X,Y>
Router->>Manage: check_version
Router->>Manage: check_is_normal
Router->>Core: remove_liquidity
Core->>Math: mul_div calculate return ratio
Core->>Manage: decrease_supply

Note over Core: Burn LP tokens
Core-->>Router: (coin_x, coin_y)
Router->>Router: emit(RemovelLiquidityEvent)

3. Token Swap (swap)

|. Exact Input Swaps

1. swap_exact_x_to_y - Swap Fixed Amount of X for Y

sequenceDiagram
participant User
participant Router
participant Core
participant Math
participant Manage

User->>Router: swap_exact_x_to_y<X,Y>(coin_x_in, value_y_out_min)
Router->>Manage: check_version

Router->>Manage: check_is_normal

Router->>Core: swap_exact_x_to_y

Core->>Math: get_amount_out
Note over Math: amount_out = (reserve_out * amount_in * (10000 - fee_rate))
/
(reserve_in * 10000 + amount_in * (10000 - fee_rate))

Core->>Core: assertl(value_y_out >=value_y_out_min)
Note over Core: Check slippage protection

alt is_open_protocol_fee
Core->>Math: get_fee_to_team
Note over Math: coin_x_fee =value_x_in * fee_rate / (FEE_SCALE * 5)
Core->>Manage: join fee balance

end

Core->>Manage: join remaining X to pool
Core->>Manage: take Y from pool

Core->>Math: assert_Ip_value_is_increased
Note over Math: Verify (new_x * new_y) >= (old_x * old_y)

Core-->>Router: (value_x_in, value_y_out, fee_x, fee_y, coin_y_out)
Router->>Router: emit(SwapEvent)

2. swap_exact_y_to_x-Swap Fixed Amount of Y for X

sequenceDiagram
participant User
participant Router
participant Core
participant Math
participant Manage

User->>Router: swap_exact_y_to_x<X,Y>(coin_y_in, value_x_out_min)
Router->>Manage: check_version

Router->>Manage: check_is_normal

Router->>Core: swap_exact_y_to_x

Core->>Math: get_amount_out
Note over Math: amount_out = (reserve_x * amount_in * (10000 - fee_rate))
/
(reserve_y * 10000 + amount_in * (10000 - fee_rate))

Core->>Core: assert!(value_x_out >= value_x_out_min)
Note over Core: Check slippage protection

alt is_open_protocol_fee
Core->>Math: get_fee_to_team
Note over Math: coin_y_fee = value_y_in * fee_rate / (FEE_SCALE * 5)
Core->>Manage: join fee balance

end

Core->>Manage: join remaining Y to pool
Core->>Manage: take X from pool

Core->>Math: assert_lp_value_is_increased
Note over Math: Verify (new_x * new_y) >= (old_x * old_y)

Core-->>Router: (value_y_in, value_x_out, fee_x, fee_y, coin_x_out)
Router->>Router: emit(SwapEvent)

Il. Exact Output Swaps

1. swap_x_to_exact_y - Use X to Swap for Fixed Amount of Y

sequenceDiagram
participant User
participant Router
participant Core
participant Math
participant Manage

User->>Router: swap_x_to_exact_y<X,Y>(coin_x_in, value_y_out)
Router->>Manage: check_version

Router->>Manage: check_is_normal

Router->>Core: swap_x_to_exact_y

Core->>Math: get_amount_in
Note over Math: amount_in = (reserve_in * amount_out * 10000)
/ ((reserve_out -
amount_out) * (10000 - fee_rate))

Core->>Core: assert!(value_x_in <= value_x_max)
Note over Core: Check maximum input limit

alt value_x_in <value_x_max
Core->>Core: create excess_x_coin
Note over Core: Return excess X tokens

else
Core->>Core: create zero coin

end

alt is_open_protocol_fee
Core->>Math: get_fee_to_team
Note over Math: coin_x_fee = value_x_in * fee_rate / (FEE_SCALE * 5)
Core->>Manage: join fee balance

end

Core->>Manage: join remaining X to pool
Core->>Manage: take Y from pool

Core->>Math: assert_lp_value_is_increased
Note over Math: Verify (new_x * new_y) >= (old_x * old_y)

Core-->>Router: (value_x_in, value_y_out, fee_x, fee_y, coin_y_out, excess_x_coin)
Router->>Router: emit(SwapEvent)

2. swap_y to_exact_x-UseY to Swap for Fixed Amount of X

sequenceDiagram
participant User
participant Router
participant Core
participant Math
participant Manage

User->>Router: swap_y_to_exact_x<X,Y>(coin_y_in, value_x_out)
Router->>Manage: check_version

Router->>Manage: check_is_normal

Router->>Core: swap_y_to_exact_x

Core->>Math: get_amount_in
Note over Math: amount_in = (reserve_in * amount_out * 10000)
/ ((reserve_out -
amount_out) * (10000 - fee_rate))

Core->>Core: assert!(value_y_in <= value_y_max)
Note over Core: Check maximum input limit

alt value_y_in <value_y_max

Core->>Core: create excess_y_coin
Note over Core: Return excess Y tokens
else
Core->>Core: create zero coin
end

alt is_open_protocol_fee
Core->>Math: get_fee_to_team
Note over Math: coin_y_fee = value_y_in * fee_rate / (FEE_SCALE * 5)
Core->>Manage: join fee balance

end

Core->>Manage: join remaining Y to pool

Core->>Manage: take X from pool

Core->>Math: assert_lp_value_is_increased
Note over Math: Verify (new_x * new_y) >= (old_x * old_y)

Core-->>Router: (value_y_in, value_x_out, fee_x, fee_y, coin_x_out, excess_y_coin)
Router->>Router: emit(SwapEvent)

Swap Additional Notes: Main differences between the two methods
1. Exact Input Swaps
o Fixed input amount
o Need to specify minimum output amount (slippage protection)
o Calculation uses get_amount_out
o No need to return excess tokens
2. Exact Output Swaps
o Fixed output amount
o Need to specify maximum input amount
o Calculation uses get_amount_in
o Need to handle and return excess input tokens
3. Trading Checkpoints

4. Mathematical Calculation Security

amount_out = (reserve_out * amount_in * (10000 - fee_rate))
/ (reserve_in * 10000 + amount_in * (10000 - fee_rate))

amount_in = (reserve_in * amount_out * 10000)
/ ((reserve_out - amount_out) * (10000 - fee_rate))

15/25

5. Slippage Protection
o Exact Input: Check output is not below minimum
o Exact Output: Check input does not exceed maximum

6. K Value Verification

assert!(
(old_reserve_x * old_reserve_y) <= (new_reserve_x * new_reserve_y),

EIncorrectSwap

7. Fee Handling
o Protocol fee calculation (20% of fee)
o LP fee remains in pool

o Return excess tokens

IV. Key Security Point Checks

1. Permission Control
o AdminCap permission verification
o Emergency pause mechanism
o Version control check
2. Mathematical Calculation Security
o Overflow protection
o Slippage limits
o Minimum liquidity restrictions

3. Rate Limitations

16/25

o Maximum rate limit (1%)
o Fixed protocol fee ratio (20%)
o Rate precision control
4. Transaction Protection
o Kvalue verification
o Minimum output protection
o Zero value checks
5. Asset Security
o Balance checks
o Return excess tokens

o LP token minting/burning

V. Constant Configuration

const DEFAULT _FEE_RATE: u64 = 30;
const MAX_FEE_RATE: u64 = 100;
const FEE_SCALE: u64 = 10000;

const MINIMAL_LIQUIDITY: ué4 = 1000;

const U64_MAX: ub4 = 18446744073709551615;

VI. Event Monitoring

1. CreatedPoolEvent

17/25

o pool_address
o lIp_name
o creator
o fee rate
2. AddLiquidityEvent
o lIp_name
o coin_x_ val
o coin_y_val
o Ip_val
3. RemoveliquidityEvent
o Ip_name
o coin_x_ val
o coin_y_val
o Ip_val
4. SwapEvent
o lIp_name
o value_x_in/out
o value_y_in/out
o fee_xly
5. WithdrewEvent
o Ip_name
o fee_coin_x

o fee_coin_y

18/25

19/25

4 Findings

CON-1 Repeat Settings will Cause Unnecessary Gas
Consumption

Severity: Informational
Status: Fixed

Code Location:

sources/control.move#143-178

Descriptions:
In these functions: control_protocol_fee_switch , modify_fee_rate ,

modify_min_add_liquidity_lp_amount

manage::control_protocol_fee_switch(global, is_open_protocol_fee);

manage::modify_fee_rate<X, Y>(pool, new_fee_rate);

manage::modify_min_add_liquidity_lp_amount<X, Y>(pool, min_add_liquidity_lp_amount);

If the new value is the same as the current value, it isn't very sensible to update it.

Suggestion:

Add a check before updating the value; it can reduce unnecessary gas consumption.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/25

COR-1 Incorrect min_add_liquidity_Ip_amount Check Does
Not Match Settings

Severity: Medium
Status: Fixed

Code Location:

sources/core.move#60-63

Descriptions:

In the add_liquidity function, we have a check to ensure that provided_lig is greater than
or equal to pool.min_add_liquidity_Ip_amount , but if Ip_supply == 0 , the value of
provided_liq is reduced by MINIMAL_LIQUIDITY . In this case, the logic may need to check
initial_lig >= manage::;get_min_add_liquidity_lp_amount(pool) instead of the value of

subtracting MINIMAL_LIQUIDITY from provided_liq .

Suggestion:

Change the check to:

let provided_liq = if (Ip_supply == 0) {
+ assert!(initial_lig >= manage::get_min_add_liquidity_Ip_amount(pool),
ELessThanMinAddLiquidityLpAmount);

} else {
let x_lig = (Ip_supply as u128) * (optimal_coin_x as u128) / (coin_x_reserve as u128);
lety_lig = (Ip_supply as u128) * (optimal_coin_y as u128) / (coin_y_reserve as u128);
if (x_lig <y_lig) {
assert!(x_lig < (U64_MAX as u128), EU640verflow);
- assert!(x_lig >= manage::get_min_add_liquidity_Ip_amount(pool),
ELessThanMinAddLiquidityLpAmount);
(x_lig as u64)
} else {
assert!(y_lig < (U64_MAX as u128), EU640verflow);
assertl(y_lig >= manage::get_min_add_liquidity_Ip_amount(pool),

21/25

ELessThanMinAddLiquidityLpAmount);
(y_lig as u64)
}

- assert!(provided_lig >= manage::get_min_add_liquidity_Ip_amount(pool),
ELessThanMinLPAmount);

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/25

MAN-1 Incorrect Verification Resulted in Temporary Asset
Freezing

Severity: Minor
Status: Fixed

Code Location:

sources/manage.move#106-115

Descriptions:

In the withdraw function

assert!(bal_x_fee > 0 && bal_y_fee > 0, EZeroAmount);

If the bal_x_fee or bal_y_fee is 0, it will cause the transaction to fail, which may not be the

expected behavior. Maybe we just ensure one of them is greater than 0.

Suggestion:

Change the check to:

assert!(bal_x_fee >0 | | bal_y_fee >0, EZeroAmount);

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/25

Appendix 1

Issue Level

¢ Informational issues are often recommendations to improve the style of the code or
to optimize code that does not affect the overall functionality.

e Minor issues are general suggestions relevant to best practices and readability. They
don't post any direct risk. Developers are encouraged to fix them.

e Medium issues are non-exploitable problems and not security vulnerabilities. They
should be fixed unless there is a specific reason not to.

e Major issues are security vulnerabilities. They put a portion of users' sensitive
information at risk, and often are not directly exploitable. All major issues should be
fixed.

e Critical issues are directly exploitable security vulnerabilities. They put users' sensitive
information at risk. All critical issues should be fixed.

Issue Status

e Fixed: The issue has been resolved.
e Partially Fixed: The issue has been partially resolved.

e Acknowledged: The issue has been acknowledged by the code owner, and the code
owner confirms it's as designed, and decides to keep it.

24/25

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

Ve =T
N2 N
77 S\

. MOVEBIT /
N~

25/25

	930_page1.pdf
	930_page2.pdf

