
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

Dipcoin

Wed Aug 13 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

Dipcoin Audit Report

1 Executive Summary

1.1 Project Information

Description A smart contract is designed to support Spot AMM
(Automated Market Maker) swaps and perpetual contracts,
enabling users to trade directly on the blockchain with high
throughput and low latency.

Type DEX

Auditors MoveBit

Timeline Fri Aug 01 2025 - Wed Aug 13 2025

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/dipcoinlab/dipcoin-amm

Commits a65b036f4db46c4a4d736c65500ae068ce9ada6b
e831b242e265b25ad0b9368a323cb4523ebd854d

1/25

https://github.com/dipcoinlab/dipcoin-amm
https://github.com/dipcoinlab/dipcoin-amm/tree/a65b036f4db46c4a4d736c65500ae068ce9ada6b
https://github.com/dipcoinlab/dipcoin-amm/tree/e831b242e265b25ad0b9368a323cb4523ebd854d

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MAT sources/math.move 5e78a120e82dc6aa52ac1e7fddac5
90e197e49fc

ROU sources/router.move 5c485459e5bab453e5f70c30baf75
6a1917a21cd

EVE sources/event.move 668b09b1f945634b52e065eadec0
29078f9d7de7

COR sources/core.move b60dd6911442293ad525bf759c58
5d18bf292fd3

COM sources/comparator.move 2481b46e06c921ac9d0e8caaef0a3
a43790bb4d6

CON1 sources/control.move 51b349993d0b38dec579e5f108a0
acc7909b4133

MAN sources/manage.move 40fa66be6742cdf4684c9f25328a0a
eb78a070a2

2/25

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 3 0

Informational 1 1 0

Minor 1 1 0

Medium 1 1 0

Major 0 0 0

Critical 0 0 0

3/25

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/25

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/25

2 Summary

This report has been commissioned by Dipcoin Team to identify any potential issues and
vulnerabilities in the source code of the Dipcoin smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

CON-1 Repeat Settings will Cause
Unnecessary Gas Consumption

Informational Fixed

COR-1 Incorrect
min_add_liquidity_lp_amount

Check Does Not Match Settings

Medium Fixed

MAN-1 Incorrect Verification Resulted in
Temporary Asset Freezing

Minor Fixed

6/25

3 Participant Process

Here are the relevant actors with their respective abilities within the Dipcoin Smart Contract
:

I. Core Module Description

1. control.move

Admin permission control entry

Pool creation and management

Protocol fee control

2. router.move

Add/remove liquidity

User trading entry

Token exchange routing

3. core.move

Core trading logic implementation

Liquidity calculation

Fee handling

4. manage.move

Global configuration management

Pool status management

Permission verification

5. math.move

AMM mathematical calculations

7/25

Slippage protection

Liquidity calculation

6. comparator.move

Token sorting comparison

LP token naming

II. Key Admin Permission Methods

1. create Trading Pool (create_pool_by_admin_cap)

sequenceDiagramsequenceDiagram
 participantparticipant Admin Admin
 participantparticipant Control Control
 participantparticipant Manage Manage
 participantparticipant Comparator Comparator

 AdminAdmin->>->>ControlControl:: create_pool_by_admin_cap<X,Y> create_pool_by_admin_cap<X,Y>(AdminCap)(AdminCap)
 ControlControl->>->>ManageManage:: check_version check_version
 ControlControl->>->>ManageManage:: check_is_normal check_is_normal
 ControlControl->>->>ComparatorComparator:: is_order<X,Y> is_order<X,Y>
 altalt X < Y X < Y
 ControlControl->>->>ManageManage:: create_pool<X,Y> create_pool<X,Y>
 elseelse Y < X Y < X
 ControlControl->>->>ManageManage:: create_pool<Y,X> create_pool<Y,X>
 endend
 ManageManage-->>-->>ControlControl:: (pool_address, lp_name, fee_rate)(pool_address, lp_name, fee_rate)
 ControlControl->>->>ControlControl:: emit emit(CreatedPoolEvent)(CreatedPoolEvent)

2. Emergency Pause/Resume (pause/resume)

sequenceDiagramsequenceDiagram
 participantparticipant Admin Admin
 participantparticipant Control Control
 participantparticipant Manage Manage

8/25

 AdminAdmin->>->>ControlControl:: pause pause(AdminCap)(AdminCap)
 ControlControl->>->>ManageManage:: check_version check_version
 ControlControl->>->>ManageManage:: has_paused has_paused
 ControlControl->>->>ManageManage:: pause pause
 Note overNote over Manage Manage:: Set has_paused = true Set has_paused = true

 AdminAdmin->>->>ControlControl:: resume resume(AdminCap)(AdminCap)
 ControlControl->>->>ManageManage:: check_version check_version
 ControlControl->>->>ManageManage:: has_paused has_paused
 ControlControl->>->>ManageManage:: resume resume
 Note overNote over Manage Manage:: Set has_paused = false Set has_paused = false

3. Fee Rate Control (control_protocol_fee_switch/modify_fee_rate)

sequenceDiagramsequenceDiagram
 participantparticipant Admin Admin
 participantparticipant Control Control
 participantparticipant Manage Manage

 AdminAdmin->>->>ControlControl:: control_protocol_fee_switch control_protocol_fee_switch(AdminCap, is_open)(AdminCap, is_open)
 ControlControl->>->>ManageManage:: check_version check_version
 ControlControl->>->>ManageManage:: check_is_normal check_is_normal
 ControlControl->>->>ManageManage:: control_protocol_fee_switch control_protocol_fee_switch
 Note overNote over Manage Manage:: Update protocol fee status Update protocol fee status

 AdminAdmin->>->>ControlControl:: modify_fee_rate<X,Y> modify_fee_rate<X,Y>(AdminCap, new_rate)(AdminCap, new_rate)
 ControlControl->>->>ManageManage:: check_version check_version
 ControlControl->>->>ManageManage:: check_is_normal check_is_normal
 ControlControl->>->>ManageManage:: modify_fee_rate modify_fee_rate
 Note overNote over Manage Manage:: Update pool fee rate Update pool fee rate

III. Trading Related Methods

1. Add Liquidity (add_liquidity)

sequenceDiagramsequenceDiagram
 participantparticipant User User

9/25

 participantparticipant Router Router
 participantparticipant Core Core
 participantparticipant Math Math
 participantparticipant Manage Manage

 UserUser->>->>RouterRouter:: add_liquidity<X,Y> add_liquidity<X,Y>
 RouterRouter->>->>ManageManage:: check_version check_version
 RouterRouter->>->>ManageManage:: check_is_normal check_is_normal
 RouterRouter->>->>CoreCore:: add_liquidity add_liquidity
 CoreCore->>->>MathMath:: calc_optimal_coin_values calc_optimal_coin_values
 Note overNote over Math Math:: Calculate optimal addition ratio Calculate optimal addition ratio
 CoreCore->>->>MathMath:: sqrt sqrt(optimal_x * optimal_y)(optimal_x * optimal_y)
 Note overNote over Math Math:: Calculate initial liquidity for first addition Calculate initial liquidity for first addition
 CoreCore->>->>ManageManage:: increase_supply increase_supply
 Note overNote over Core Core:: Mint LP tokens Mint LP tokens
 CoreCore-->>-->>RouterRouter:: (LP tokens, actual_x, actual_y)(LP tokens, actual_x, actual_y)
 RouterRouter->>->>RouterRouter:: emit emit(AddLiquidityEvent)(AddLiquidityEvent)

2. Remove Liquidity (remove_liquidity)

sequenceDiagramsequenceDiagram
 participantparticipant User User
 participantparticipant Router Router
 participantparticipant Core Core
 participantparticipant Math Math
 participantparticipant Manage Manage

 UserUser->>->>RouterRouter:: remove_liquidity<X,Y> remove_liquidity<X,Y>
 RouterRouter->>->>ManageManage:: check_version check_version
 RouterRouter->>->>ManageManage:: check_is_normal check_is_normal
 RouterRouter->>->>CoreCore:: remove_liquidity remove_liquidity
 CoreCore->>->>MathMath:: mul_div calculate return ratio mul_div calculate return ratio
 CoreCore->>->>ManageManage:: decrease_supply decrease_supply
 Note overNote over Core Core:: Burn LP tokens Burn LP tokens
 CoreCore-->>-->>RouterRouter:: (coin_x, coin_y)(coin_x, coin_y)
 RouterRouter->>->>RouterRouter:: emit emit(RemoveLiquidityEvent)(RemoveLiquidityEvent)

3. Token Swap (swap)

10/25

I. Exact Input Swaps

1. swap_exact_x_to_y - Swap Fixed Amount of X for Y

sequenceDiagramsequenceDiagram
 participantparticipant User User
 participantparticipant Router Router
 participantparticipant Core Core
 participantparticipant Math Math
 participantparticipant Manage Manage

 UserUser->>->>RouterRouter:: swap_exact_x_to_y<X,Y> swap_exact_x_to_y<X,Y>(coin_x_in, value_y_out_min)(coin_x_in, value_y_out_min)
 RouterRouter->>->>ManageManage:: check_version check_version
 RouterRouter->>->>ManageManage:: check_is_normal check_is_normal
 RouterRouter->>->>CoreCore:: swap_exact_x_to_y swap_exact_x_to_y

 CoreCore->>->>MathMath:: get_amount_out get_amount_out
 Note overNote over Math Math:: amount_out = amount_out = ((reserve_out * amount_in * reserve_out * amount_in * (10000 - fee_rate))(10000 - fee_rate))
/
/
((reserve_in * 10000 + amount_in * reserve_in * 10000 + amount_in * (10000 - fee_rate))(10000 - fee_rate))

 CoreCore->>->>CoreCore:: assert! assert!(value_y_out >= value_y_out_min)(value_y_out >= value_y_out_min)
 Note overNote over Core Core:: Check slippage protection Check slippage protection

 altalt is_open_protocol_fee is_open_protocol_fee
 CoreCore->>->>MathMath:: get_fee_to_team get_fee_to_team
 Note overNote over Math Math:: coin_x_fee = value_x_in * fee_rate / coin_x_fee = value_x_in * fee_rate / (FEE_SCALE * 5)(FEE_SCALE * 5)
 CoreCore->>->>ManageManage:: join fee balance join fee balance
 endend

 CoreCore->>->>ManageManage:: join remaining X to pool join remaining X to pool
 CoreCore->>->>ManageManage:: take Y from pool take Y from pool

 CoreCore->>->>MathMath:: assert_lp_value_is_increased assert_lp_value_is_increased
 Note overNote over Math Math:: Verify Verify (new_x * new_y)(new_x * new_y) >= >= (old_x * old_y)(old_x * old_y)

 CoreCore-->>-->>RouterRouter:: (value_x_in, value_y_out, fee_x, fee_y, coin_y_out)(value_x_in, value_y_out, fee_x, fee_y, coin_y_out)
 RouterRouter->>->>RouterRouter:: emit emit(SwapEvent)(SwapEvent)

11/25

2. swap_exact_y_to_x - Swap Fixed Amount of Y for X

sequenceDiagramsequenceDiagram
 participantparticipant User User
 participantparticipant Router Router
 participantparticipant Core Core
 participantparticipant Math Math
 participantparticipant Manage Manage

 UserUser->>->>RouterRouter:: swap_exact_y_to_x<X,Y> swap_exact_y_to_x<X,Y>(coin_y_in, value_x_out_min)(coin_y_in, value_x_out_min)
 RouterRouter->>->>ManageManage:: check_version check_version
 RouterRouter->>->>ManageManage:: check_is_normal check_is_normal
 RouterRouter->>->>CoreCore:: swap_exact_y_to_x swap_exact_y_to_x

 CoreCore->>->>MathMath:: get_amount_out get_amount_out
 Note overNote over Math Math:: amount_out = amount_out = ((reserve_x * amount_in * reserve_x * amount_in * (10000 - fee_rate))(10000 - fee_rate))
/
/
((reserve_y * 10000 + amount_in * reserve_y * 10000 + amount_in * (10000 - fee_rate))(10000 - fee_rate))

 CoreCore->>->>CoreCore:: assert! assert!(value_x_out >= value_x_out_min)(value_x_out >= value_x_out_min)
 Note overNote over Core Core:: Check slippage protection Check slippage protection

 altalt is_open_protocol_fee is_open_protocol_fee
 CoreCore->>->>MathMath:: get_fee_to_team get_fee_to_team
 Note overNote over Math Math:: coin_y_fee = value_y_in * fee_rate / coin_y_fee = value_y_in * fee_rate / (FEE_SCALE * 5)(FEE_SCALE * 5)
 CoreCore->>->>ManageManage:: join fee balance join fee balance
 endend

 CoreCore->>->>ManageManage:: join remaining Y to pool join remaining Y to pool
 CoreCore->>->>ManageManage:: take X from pool take X from pool

 CoreCore->>->>MathMath:: assert_lp_value_is_increased assert_lp_value_is_increased
 Note overNote over Math Math:: Verify Verify (new_x * new_y)(new_x * new_y) >= >= (old_x * old_y)(old_x * old_y)

 CoreCore-->>-->>RouterRouter:: (value_y_in, value_x_out, fee_x, fee_y, coin_x_out)(value_y_in, value_x_out, fee_x, fee_y, coin_x_out)
 RouterRouter->>->>RouterRouter:: emit emit(SwapEvent)(SwapEvent)

II. Exact Output Swaps

12/25

1. swap_x_to_exact_y - Use X to Swap for Fixed Amount of Y

sequenceDiagramsequenceDiagram
 participantparticipant User User
 participantparticipant Router Router
 participantparticipant Core Core
 participantparticipant Math Math
 participantparticipant Manage Manage

 UserUser->>->>RouterRouter:: swap_x_to_exact_y<X,Y> swap_x_to_exact_y<X,Y>(coin_x_in, value_y_out)(coin_x_in, value_y_out)
 RouterRouter->>->>ManageManage:: check_version check_version
 RouterRouter->>->>ManageManage:: check_is_normal check_is_normal
 RouterRouter->>->>CoreCore:: swap_x_to_exact_y swap_x_to_exact_y

 CoreCore->>->>MathMath:: get_amount_in get_amount_in
 Note overNote over Math Math:: amount_in = amount_in = (reserve_in * amount_out * 10000)(reserve_in * amount_out * 10000)
/
/ ((reserve_out -((reserve_out -
amount_out)amount_out) * * (10000 - fee_rate))(10000 - fee_rate))

 CoreCore->>->>CoreCore:: assert! assert!(value_x_in <= value_x_max)(value_x_in <= value_x_max)
 Note overNote over Core Core:: Check maximum input limit Check maximum input limit

 altalt value_x_in < value_x_max value_x_in < value_x_max
 CoreCore->>->>CoreCore:: create excess_x_coin create excess_x_coin
 Note overNote over Core Core:: Return excess X tokens Return excess X tokens
 elseelse
 CoreCore->>->>CoreCore:: create zero coin create zero coin
 endend

 altalt is_open_protocol_fee is_open_protocol_fee
 CoreCore->>->>MathMath:: get_fee_to_team get_fee_to_team
 Note overNote over Math Math:: coin_x_fee = value_x_in * fee_rate / coin_x_fee = value_x_in * fee_rate / (FEE_SCALE * 5)(FEE_SCALE * 5)
 CoreCore->>->>ManageManage:: join fee balance join fee balance
 endend

 CoreCore->>->>ManageManage:: join remaining X to pool join remaining X to pool
 CoreCore->>->>ManageManage:: take Y from pool take Y from pool

 CoreCore->>->>MathMath:: assert_lp_value_is_increased assert_lp_value_is_increased
 Note overNote over Math Math:: Verify Verify (new_x * new_y)(new_x * new_y) >= >= (old_x * old_y)(old_x * old_y)

13/25

 CoreCore-->>-->>RouterRouter:: (value_x_in, value_y_out, fee_x, fee_y, coin_y_out, excess_x_coin)(value_x_in, value_y_out, fee_x, fee_y, coin_y_out, excess_x_coin)
 RouterRouter->>->>RouterRouter:: emit emit(SwapEvent)(SwapEvent)

2. swap_y_to_exact_x - Use Y to Swap for Fixed Amount of X

sequenceDiagramsequenceDiagram
 participantparticipant User User
 participantparticipant Router Router
 participantparticipant Core Core
 participantparticipant Math Math
 participantparticipant Manage Manage

 UserUser->>->>RouterRouter:: swap_y_to_exact_x<X,Y> swap_y_to_exact_x<X,Y>(coin_y_in, value_x_out)(coin_y_in, value_x_out)
 RouterRouter->>->>ManageManage:: check_version check_version
 RouterRouter->>->>ManageManage:: check_is_normal check_is_normal
 RouterRouter->>->>CoreCore:: swap_y_to_exact_x swap_y_to_exact_x

 CoreCore->>->>MathMath:: get_amount_in get_amount_in
 Note overNote over Math Math:: amount_in = amount_in = (reserve_in * amount_out * 10000)(reserve_in * amount_out * 10000)
/
/ ((reserve_out -((reserve_out -
amount_out)amount_out) * * (10000 - fee_rate))(10000 - fee_rate))

 CoreCore->>->>CoreCore:: assert! assert!(value_y_in <= value_y_max)(value_y_in <= value_y_max)
 Note overNote over Core Core:: Check maximum input limit Check maximum input limit

 altalt value_y_in < value_y_max value_y_in < value_y_max
 CoreCore->>->>CoreCore:: create excess_y_coin create excess_y_coin
 Note overNote over Core Core:: Return excess Y tokens Return excess Y tokens
 elseelse
 CoreCore->>->>CoreCore:: create zero coin create zero coin
 endend

 altalt is_open_protocol_fee is_open_protocol_fee
 CoreCore->>->>MathMath:: get_fee_to_team get_fee_to_team
 Note overNote over Math Math:: coin_y_fee = value_y_in * fee_rate / coin_y_fee = value_y_in * fee_rate / (FEE_SCALE * 5)(FEE_SCALE * 5)
 CoreCore->>->>ManageManage:: join fee balance join fee balance
 endend

 CoreCore->>->>ManageManage:: join remaining Y to pool join remaining Y to pool

14/25

 CoreCore->>->>ManageManage:: take X from pool take X from pool

 CoreCore->>->>MathMath:: assert_lp_value_is_increased assert_lp_value_is_increased
 Note overNote over Math Math:: Verify Verify (new_x * new_y)(new_x * new_y) >= >= (old_x * old_y)(old_x * old_y)

 CoreCore-->>-->>RouterRouter:: (value_y_in, value_x_out, fee_x, fee_y, coin_x_out, excess_y_coin)(value_y_in, value_x_out, fee_x, fee_y, coin_x_out, excess_y_coin)
 RouterRouter->>->>RouterRouter:: emit emit(SwapEvent)(SwapEvent)

Swap Additional Notes: Main differences between the two methods

1. Exact Input Swaps

Fixed input amount

Need to specify minimum output amount (slippage protection)

Calculation uses get_amount_out

No need to return excess tokens

2. Exact Output Swaps

Fixed output amount

Need to specify maximum input amount

Calculation uses get_amount_in

Need to handle and return excess input tokens

3. Trading Checkpoints

4. Mathematical Calculation Security

// get_amount_out calculation// get_amount_out calculation
amount_out amount_out == ((reserve_out reserve_out ** amount_in amount_in ** ((1000010000 -- fee_rate fee_rate))))
 // ((reserve_in reserve_in ** 1000010000 ++ amount_in amount_in ** ((1000010000 -- fee_rate fee_rate))))

// get_amount_in calculation// get_amount_in calculation
amount_in amount_in == ((reserve_in reserve_in ** amount_out amount_out ** 1000010000))
 // ((((reserve_out reserve_out -- amount_out amount_out)) ** ((1000010000 -- fee_rate fee_rate))))

15/25

5. Slippage Protection

Exact Input: Check output is not below minimum

Exact Output: Check input does not exceed maximum

6. K Value Verification

assertassert!!((
 ((old_reserve_x old_reserve_x ** old_reserve_y old_reserve_y)) <=<= ((new_reserve_x new_reserve_x ** new_reserve_y new_reserve_y)),,
 EIncorrectSwapEIncorrectSwap
))

7. Fee Handling

Protocol fee calculation (20% of fee)

LP fee remains in pool

Return excess tokens

IV. Key Security Point Checks

1. Permission Control

AdminCap permission verification

Emergency pause mechanism

Version control check

2. Mathematical Calculation Security

Overflow protection

Slippage limits

Minimum liquidity restrictions

3. Rate Limitations

16/25

Maximum rate limit (1%)

Fixed protocol fee ratio (20%)

Rate precision control

4. Transaction Protection

K value verification

Minimum output protection

Zero value checks

5. Asset Security

Balance checks

Return excess tokens

LP token minting/burning

V. Constant Configuration

// Fee related// Fee related
constconst DEFAULT_FEE_RATEDEFAULT_FEE_RATE:: u64 u64 == 3030;; // Default trading fee rate 0.3%// Default trading fee rate 0.3%
constconst MAX_FEE_RATEMAX_FEE_RATE:: u64 u64 == 100100;; // Maximum fee rate 1%// Maximum fee rate 1%
constconst FEE_SCALEFEE_SCALE:: u64 u64 == 1000010000;; // Fee precision// Fee precision

// Liquidity related// Liquidity related
constconst MINIMAL_LIQUIDITYMINIMAL_LIQUIDITY:: u64 u64 == 10001000;; // Minimum liquidity requirement// Minimum liquidity requirement

// Value limits// Value limits
constconst U64_MAXU64_MAX:: u64 u64 == 1844674407370955161518446744073709551615;; // u64 maximum value// u64 maximum value

VI. Event Monitoring

1. CreatedPoolEvent

17/25

pool_address

lp_name

creator

fee_rate

2. AddLiquidityEvent

lp_name

coin_x_val

coin_y_val

lp_val

3. RemoveLiquidityEvent

lp_name

coin_x_val

coin_y_val

lp_val

4. SwapEvent

lp_name

value_x_in/out

value_y_in/out

fee_x/y

5. WithdrewEvent

lp_name

fee_coin_x

fee_coin_y

18/25

19/25

4 Findings

CON-1 Repeat Settings will Cause Unnecessary Gas
Consumption

Severity: Informational

Status: Fixed

Code Location:

sources/control.move#143-178

Descriptions:

In these functions: control_protocol_fee_switch , modify_fee_rate ,

modify_min_add_liquidity_lp_amount

 managemanage::::control_protocol_fee_switchcontrol_protocol_fee_switch((globalglobal,, is_open_protocol_fee is_open_protocol_fee));;

managemanage::::modify_fee_ratemodify_fee_rate<<XX,, YY>>((poolpool,, new_fee_rate new_fee_rate));;

managemanage::::modify_min_add_liquidity_lp_amountmodify_min_add_liquidity_lp_amount<<XX,, YY>>((poolpool,, min_add_liquidity_lp_amount min_add_liquidity_lp_amount));;

If the new value is the same as the current value, it isn't very sensible to update it.

Suggestion:

Add a check before updating the value; it can reduce unnecessary gas consumption.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/25

COR-1 Incorrect min_add_liquidity_lp_amount Check Does
Not Match Settings

Severity: Medium

Status: Fixed

Code Location:

sources/core.move#60-63

Descriptions:

In the add_liquidity function, we have a check to ensure that provided_liq is greater than

or equal to pool.min_add_liquidity_lp_amount , but if lp_supply == 0 , the value of

provided_liq is reduced by MINIMAL_LIQUIDITY . In this case, the logic may need to check

initial_liq >= manage::get_min_add_liquidity_lp_amount(pool) instead of the value of

subtracting MINIMAL_LIQUIDITY from provided_liq .

Suggestion:

Change the check to:

 letlet provided_liq provided_liq == ifif ((lp_supply lp_supply ==== 00)) {{
++ assert assert!!((initial_liq initial_liq >=>= manage manage::::get_min_add_liquidity_lp_amountget_min_add_liquidity_lp_amount((poolpool)),,
ELessThanMinAddLiquidityLpAmountELessThanMinAddLiquidityLpAmount));;

 }} elseelse {{
 letlet x_liq x_liq == ((lp_supply lp_supply asas u128 u128)) ** ((optimal_coin_x optimal_coin_x asas u128 u128)) // ((coin_x_reserve coin_x_reserve asas u128 u128));;
 letlet y_liq y_liq == ((lp_supply lp_supply asas u128 u128)) ** ((optimal_coin_y optimal_coin_y asas u128 u128)) // ((coin_y_reserve coin_y_reserve asas u128 u128));;
 ifif ((x_liq x_liq << y_liq y_liq)) {{
 assertassert!!((x_liq x_liq << ((U64_MAXU64_MAX asas u128 u128)),, EU64OverflowEU64Overflow));;
++ assert assert!!((x_liq x_liq >=>= manage manage::::get_min_add_liquidity_lp_amountget_min_add_liquidity_lp_amount((poolpool)),,
ELessThanMinAddLiquidityLpAmountELessThanMinAddLiquidityLpAmount));;
 ((x_liq x_liq asas u64 u64))
 }} elseelse {{
 assertassert!!((y_liq y_liq << ((U64_MAXU64_MAX asas u128 u128)),, EU64OverflowEU64Overflow));;
++ assert assert!!((y_liq y_liq >=>= manage manage::::get_min_add_liquidity_lp_amountget_min_add_liquidity_lp_amount((poolpool)),,

21/25

ELessThanMinAddLiquidityLpAmountELessThanMinAddLiquidityLpAmount));;
 ((y_liq y_liq asas u64 u64))
 }}
 }}

-- assert assert!!((provided_liq provided_liq >=>= manage manage::::get_min_add_liquidity_lp_amountget_min_add_liquidity_lp_amount((poolpool)),,
ELessThanMinLPAmountELessThanMinLPAmount));;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/25

MAN-1 Incorrect Verification Resulted in Temporary Asset
Freezing

Severity: Minor

Status: Fixed

Code Location:

sources/manage.move#106-115

Descriptions:

In the withdraw function

 assertassert!!((bal_x_fee bal_x_fee >> 00 &&&& bal_y_fee bal_y_fee >> 00,, EZeroAmountEZeroAmount));;

If the bal_x_fee or bal_y_fee is 0, it will cause the transaction to fail, which may not be the

expected behavior. Maybe we just ensure one of them is greater than 0.

Suggestion:

Change the check to:

 assertassert!!((bal_x_fee bal_x_fee >> 00 |||| bal_y_fee bal_y_fee >> 00,, EZeroAmountEZeroAmount));;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/25

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

24/25

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

25/25

	930_page1.pdf
	930_page2.pdf

