
Dipcoin Perpetual

Executive Summary
This audit report was prepared by Quantstamp, the leader in blockchain security.

Type Perpetual DEX

Timeline 2025-10-27 through 2025-11-28

Language Move

Methods
Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification None

Source Code
dipcoinlab/dipcoin-perpetual

#419edec

Auditors
Tim Sigl Auditing Engineer

Adrian Koegl Senior Auditing Engineer

Hamed Mohammadi Auditing Engineer

Documentation quality Medium

Test quality Medium

Total Findings
24

Fixed: 13 Acknowledged: 9
Mitigated: 2

High severity findings 2 Acknowledged: 2

Medium severity findings 3 Fixed: 2 Acknowledged: 1

Low severity findings
12

Fixed: 7 Acknowledged: 3
Mitigated: 2

Undetermined severity
findings

0

Informational findings 7 Fixed: 4 Acknowledged: 3

Summary of Findings
The Dipcoin protocol is a perpetual futures exchange built on the Sui blockchain. The system employs a hybrid architecture with an off-chain
orderbook and matching engine, while settlement, margin management and order validation remain on-chain. The exchange module acts as
the central coordinator, routing operations to specialized modules for trading, margin management, and risk enforcement. User funds are held in
the bank module, separated from trading positions which are tracked in the Perpetual object. The settlement module manages the flow
of funds between traders and the protocol on trading, margin adjustments, funding rate application, liquidations and auto-deleveraging (ADL).

Trading logic is split into three key modules: isolated_trading handles standard order execution, isolated_liquidation manages the
liquidation of below maintenance ratio positions, and isolated_adl resolves bankruptcy situations by force-matching profitable positions
against underwater positions. Trading is permissioned; standard trades can only be submitted by settlement operators holding a
SettlementCap , effectively keeping the matching logic under the control of the Dipcoin team.

The protocol integrates with the Pyth Network for real-time price feeds. These oracle prices are critical for the system's risk management: they
determine the execution price for liquidations and ADL events, drive the funding rate accumulation in the funding_rate module, and are used
to calculate mark prices for margin requirements.

During the audit, a high-severity issue was identified where signature verification relies solely on off-chain systems (DIP-1). Several medium-
severity issues were also identified, including an expiry buffer extending orders beyond the user-intended lifetime (DIP-2), immediate liquidation
risk via MMR updates (DIP-3), cases where the insurance position can be increased through regular trading (DIP-4), a position size increase
allowed below IMR (DIP-5), and a transaction denial-of-service via tx_hash front-running (DIP-6).

The repository contains two distinct test suites: a Sui Move unit test suite and a TypeScript integration test suite. Since coverage of both test
suites combined cannot easily be calculated, it can only be estimated. Several core modules, including isolated_trading and
isolated_liquidation , currently have minimal test coverage. The protocol's security posture would significantly benefit from the addition of

fuzz tests and invariant tests to cover edge cases and ensure system stability under stress.

Fix-Review Update 2025-12-15:
In the fix review, the client resolved 13 of 24 findings, mitigated 2, and acknowledged 9 as accepted risk or design decisions. Overall, the
implementation shows meaningful progress, but several items, especially those relying on off chain trust assumptions such as signature and
zkLogin verification paths, remain intentionally unaddressed.

https://quantstamp.com/
https://github.com/dipcoinlab/dipcoin-perpetual
https://github.com/dipcoinlab/dipcoin-perpetual/commit/419edecfe37e8e9904fab8b9012a396f93e3c93b

ID DESCRIPTION SEVERITY STATUS

DIP-1 Missing On-Chain ZK Proof Verification • High Acknowledged

DIP-2 Skipped Signature Verification for Privileged Addresses • High Acknowledged

DIP-3 Expiry Buffer Extends Orders Beyond User-Intended Lifetime • Medium Fixed

DIP-4 Immediate Liquidation Risk via MMR Update • Medium Acknowledged

DIP-5 Transaction Denial-of-Service via tx_hash Front-Running • Medium Fixed

DIP-6
Misleading Documentation Regarding Liquidations in Delisted
Markets • Low Fixed

DIP-7
Inconsistent Rounding in apply_isolated_margin()
Functions Favors Users in some Cases

• Low Mitigated

DIP-8 Revoked Exchange Manager Caps Retain Partial Access • Low Fixed

DIP-9 Funding Rates Can Continue to Accrue After Delisting • Low Fixed

DIP-10 Hardcoded Oracle Staleness Threshold • Low Acknowledged

DIP-11 Transaction Hash Index Pollution • Low Mitigated

DIP-12
Multiple S128 Helpers Can Produce Negative Zero
Representation

• Low Fixed

DIP-13 Unwithdrawable Dust Accumulation in Bank • Low Fixed

DIP-14 Incorrect Margin Ratio for price = 0 • Low Fixed

DIP-15 Several Bank s Can Exist for the Same Currency • Low Acknowledged

DIP-16
Insurance-First Liquidation Design Differs From Industry
Standard • Low Acknowledged

DIP-17 Error Code 1 Used Twice • Low Fixed

DIP-18
The trade_margin_settlement() Function Uses Incorrect
Error Code for Missing Accounts

• Informational Fixed

DIP-19
Insurance Transfer Limits Are Adjustable by the Same
ExchangeManagerCap that Performs the Transfers • Informational Fixed

DIP-20
Asymmetric Funding Debt Handling Between Long and Short
Positions • Informational Acknowledged

DIP-21 Redundant Signature Verification on Order Cancellation • Informational Fixed

DIP-22 Hardcoded 6-Decimal Assumption in Bank Conversion • Informational Acknowledged

DIP-23 Possibility of Error Code Collision • Informational Acknowledged

DIP-24 Redundant Additional Check for Insurance Pool • Informational Fixed

Assessment Breakdown
Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best
practices.

Disclaimer
Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence
Timestamp dependence
Mishandled exceptions and call stack limits
Unsafe external calls
Integer overflow / underflow
Number rounding errors
Reentrancy and cross-function vulnerabilities
Denial of service / logical oversights
Access control
Centralization of power
Business logic contradicting the specification
Code clones, functionality duplication
Gas usage
Arbitrary token minting

Methodology

1. Code review that includes the following
1. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and

functionality of the smart contract.
2. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
3. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.
2. Testing and automated analysis that includes the following:

1. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is
exercised when we run those test cases.

2. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and

control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope
Files Included

Repo: https://github.com/dipcoinlab/dipcoin-perpetual/tree/release/mainnet-beta/(419edecfe37e8e9904fab8b9012a396f93e3c93b)

Files: contracts/sources/*

Files Excluded

Repo: https://github.com/dipcoinlab/dipcoin-perpetual/tree/release/mainnet-beta/(419edecfe37e8e9904fab8b9012a396f93e3c93b)

Files: submodules/*, pyth/*, scripts/*, deployments/*, docs/*, tests/*, src/*

Operational Considerations
Per-Leverage Open Interest Caps Must Be Fully Populated The evaluator::verify_oi_open_for_account() function skips the
open-interest check whenever the computed leverage index is greater than or equal to the length of checks.max_allowed_oi_open .
Operators must ensure that set_max_oi_open is configured with limits covering every leverage tier that can be reached by the chosen
IMR values; otherwise, high-leverage positions may bypass open-interest caps entirely.
Rotate Insurance Accounts Together With Balances When changing the insurance fund’s active_account or security_account
via insurance_fund::set_active_account() or insurance_fund::set_security_account() , only the configured
addresses are updated; existing balances remain at the old accounts. Operators should transfer funds from the old account to the new
one as part of any rotation, otherwise the new accounts may be empty or underfunded when needed.
Insurance Fund Transfer Limits Are Per-Transaction, Not Cumulative The transfer_amount_limit in insurance_fund.move
restricts the maximum amount of a single transfer, not the cumulative volume over a period. Operators should be aware that multiple

transfers up to the limit can be executed sequentially as long as the transfer_interval (minimum time between transfers) is
respected. This differs from a typical "quota per epoch" model and requires careful tuning of both the interval and the per-transaction
limit to achieve the desired throughput cap.
Batch Size Limit in remove_empty_positions The position::remove_empty_positions() function iterates through a user-
provided vector of addresses. Since each table access counts towards the Sui dynamic field access limit (1,000 per transaction),
operators must ensure that the pos_keys vector does not exceed this limit (minus overhead).
Funding-Window Timing Because funding is settled at discrete window boundaries, users can try to time entries and exits just before or
after those boundaries to slightly capture funding when they would receive it or avoid a charge when they would pay.
Oracle Trust Assumption The protocol assumes the Pyth oracle provides accurate and timely price data. Oracle inaccuracies or latency
directly affect liquidations, funding, and margin calculations.
Upgrade Governance Risk All contract upgrades are assumed to undergo proper audits and review. Operators and admins must ensure
disciplined upgrade processes to prevent introducing critical vulnerabilities.
Settlement Operator Signature Integrity Users must trust that settlement operators do not forge signatures or exploit the ZK_WALLET
bypass when validating off-chain approvals.
Settlement Operator Execution Fairness Settlement operators are trusted not to front-run, extract MEV, censor orders, or manipulate
order matching. They are expected to provide best execution and honest matching.
Funding Rate Operator Honesty Funding operators are trusted to set fair and non-manipulative funding rates that reflect true market
conditions.
ADL Target Selection Fairness Deleveraging operators are assumed to select ADL targets fairly and without preferential or malicious bias.
Admin Non-Abuse of Emergency Controls Admins must not abuse pause functionality (e.g., indefinitely freezing withdrawals or trading).
Admin Parameter Tampering Risk Admins are trusted not to maliciously alter parameters (e.g., IMR/MMR, caps) to force user liquidations.
Insurance Fund Solvency and Management The insurance fund is assumed to be properly funded, secured, and managed to cover bad
debt and liquidation shortfalls.

Key Actors And Their Capabilities
Exchange Admin (ExchangeAdminCap)
Responsibilities:

Mint and assign ExchangeManagerCap , SettlementCap , DeleveragingCap , and FundingRateCap (root role appointing all
others).
Upgrade modules / deploy new implementations.
Pause and unpause the entire protocol (global emergency control).

Trust Assumptions: Root of trust. Compromise enables full protocol takeover, including replacing operators, upgrading code, force-delisting
markets, or freezing operations indefinitely.

Exchange Manager (ExchangeManagerCap)
Responsibilities:

Market Management: Create markets, update market status, force delist markets, and configure oracle price feeds.
Scoped Emergency Controls: Pause / resume trading and withdrawals per market.
Risk Parameter Configuration: Set IMR, MMR, fees, open-interest limits, funding caps (max_funding), order constraints (tick size, lot
size, min quantity).
Insurance Fund Operations: Update insurance fund accounts and execute transfers between active/security pools.
Operator & Privilege Assignment: Grant/revoke SettlementCap roles and manage the privileged-address whitelist.

Trust Assumptions: High trust. Can force liquidations via parameter changes, drain or mismanage insurance funds, delist markets, or escalate
privileges to malicious actors.

Settlement Operator (SettlementCap)
Responsibilities:

Trade Execution: Submit matched maker–taker orders on-chain.
Execution Discretion: Choose fill price and quantity within user-defined constraints.
Typically held by multiple operators.

Trust Assumptions: Trusted not to censor orders, front-run, extract MEV, manipulate execution, or exploit the ZK_WALLET signature-bypass
path. A malicious operator can legally execute at the worst price allowed by the user’s order.

Deleveraging Operator (DeleveragingCap)
Responsibilities:

Auto-Deleveraging (ADL): Select ADL targets and force position closures at bankruptcy price.
Typically held by a single operator for coordinated deleveraging.

Trust Assumptions: Trusted to trigger ADL only when legitimate and to select targets fairly, without bias or favoritism. On-chain checks limit
abuse but do not remove operator discretion.

Funding Operator (FundingRateCap)
Responsibilities:

Funding Rate Updates: Set funding rates and update funding index, bounded by max_funding .
Typically held by a single operator.

Trust Assumptions: Trusted to publish honest, non-manipulative funding rates aligned with real market conditions.

Privileged Addresses
Responsibilities:

Signature Bypass: Skip on-chain signature verification for faster execution.
Enhanced Limits: Operate with up to 5× higher open-interest caps.

Trust Assumptions: Operationally privileged but still constrained by protocol invariants (margin, balances, liquidation logic). Increased market
power and increased risk due to amplified OI limits.

Traders (Regular Users)
Responsibilities:

Collateral Management: Deposit / withdraw margin.
Trading: Submit signed off-chain orders for execution.
Delisted Market Exit: Close positions in delisted markets.

Trust Assumptions: Untrusted. All invariants should be enforced trustlessly by the protocol.

Findings
DIP-1 Missing On-Chain ZK Proof Verification • High Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

Since we operate as an on-chain/off-chain hybrid system, our off-chain infrastructure requires user
trust. Additionally, ZK proof verification exclusively applies to ZKLogin users and does not impact
wallet users.

File(s) affected: library.move , order.move , isolated_trading.move

Description: In library::verify_signature() , when the scheme byte equals SIGNED_USING_ZK_WALLET (3) , the function sets
is_verified = true without validating any zkLogin-related proofs or checking whether public_key corresponds to the claimed zkLogin

identity.

The team indicated that these zkLogin proofs are verified off-chain, but the on-chain contracts do not check that such verification actually
happened. As a result, any bug in the off-chain verification pipeline would make the on-chain authentication bypassable, since scheme 3 is
accepted unconditionally.

Recommendation: For zkLogin / ZK wallets, the strongest option is to verify ZK proofs on-chain. If on-chain verification is not wanted, it should
be clearly documented that zkLogin security is enforced entirely by off-chain infrastructure and that the contracts themselves do not verify any
zkLogin signatures or proofs.

DIP-2 Skipped Signature Verification for Privileged Addresses • High Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

To enhance efficiency, privileged addresses trade off a small degree of security. The security of
privileged addresses is fully guaranteed by the off-chain system. If a privileged address is
compromised, only the address itself will be affected—other users remain unaffected.

File(s) affected: order.move , library.move , isolated_trading.move

Description: order::verify_order_signature() skips signature verification when the creator is a privileged address listed in
ProtocolConfig.privileged_addresses . By placing a privileged address into the creator field, any user can submit an order that is

treated as if it were signed by that privileged account.

The team indicated that off-chain systems are used to prevent such misuse, but these protections are not visible or enforceable from the on-
chain contracts. Because this behavior relies entirely on off-chain systems to prevent misuse, on-chain authentication becomes bypassable if any
future function depends solely on the contract’s signature verification logic.

Recommendation: Remove the unconditional skip for privileged addresses. All orders and cancellations should require a valid signature from the
actual signer, regardless of privilege status. While skipping verification may save some gas costs for privileged users, we believe the security
trade-off is not worth the added risk of weaker authentication.

DIP-3
Expiry Buffer Extends Orders Beyond User-Intended Lifetime

• Medium Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 00ecd36379ce6496c3bc8a5247f4ac224b9d52bf .

File(s) affected: order.move

Description: The protocol applies an internal “expiry buffer” on top of the user-specified order expiry, effectively extending the validity window
without the user’s knowledge or control. This conflicts with common expectations where users already account for network and inclusion delays
when setting expiries. As a result, orders can remain valid longer than intended, exposing users to additional market and counterparty risk after
they believe the order has expired.

Exploit Scenario:
An advanced user wants a very short-lived order (e.g., “valid for 2 minutes”) around a volatile event and sets the expiry timestamp accordingly,
already pricing in expected transaction latency. The protocol then silently adds its own buffer (e.g., another minute), keeping the order fillable
beyond the original 2-minute window. If the market moves sharply in that extra time, a relayer or counterparty can still match and settle the order
at a now-unfavorable price, even though the user assumed the order was no longer executable.

Recommendation: Remove the protocol-side expiry buffer and treat the on-chain expiry as an exact, user-controlled boundary.

DIP-4 Immediate Liquidation Risk via MMR Update • Medium Acknowledged

Update
Marked as "Acknowledged" by the client.
Addressed in: 6d1e07cd32e541c1a8502a21cde137ca1dec03e9 .
The client provided the following explanation:

We added documentation for this function.

File(s) affected: perpetual.move

Description: The perpetual::set_maintenance_margin_required() function allows the Exchange Manager to update the Maintenance
Margin Ratio (MMR) for a perpetual market. This change takes effect immediately for all existing positions. If the MMR is increased, positions that
were previously safe (margin ratio > old MMR) but are below the new MMR (margin ratio < new MMR) become immediately liquidatable. This can
lead to mass liquidations without user action or market movement, potentially causing significant user losses and system instability.

Exploit Scenario:
1. A user has a position with a margin ratio of 6%. The current MMR is 5%. The position is safe.
2. The Exchange Manager calls set_maintenance_margin_required() to increase the MMR to 7%.
3. The user's position (6%) is now less than the new MMR (7%).
4. The liquidator calls exchange::liquidate() on the user's position.
5. The user is liquidated immediately, losing their position and paying liquidation penalties.

Recommendation: Implement a timelock or a grace period for MMR increases. For example, announce the new MMR but only apply it after a
delay (e.g., 7 days), allowing users to adjust their positions or add margin. Alternatively, apply the new MMR only to new positions or gradually
increase it. Another option is to remove the function altogether since it presents a significant risk to users.

DIP-5 Transaction Denial-of-Service via tx_hash Front-Running • Medium Fixed

Update
Marked as "Mitigated" by the client.
Addressed in: 7d2cb0ed1c29ae8e666fea30b63fb04171da5103 .
The client provided the following explanation:

We do not registry tx_hash through functions directly callable by user

File(s) affected: sub_accounts.move , exchange.move , order.move , bank.move

Description: All protocol operations requiring unique transaction hashes can be permanently blocked through front-running. The
validate_unique_tx function accepts arbitrary user-supplied tx_hash values without verifying their relationship to the transaction

content. Any observer who learns a transaction's tx_hash can submit it first, causing the legitimate transaction to revert permanently.

This affects all operations using the transaction indexer including trades, liquidations, deleveraging, order cancellations, margin operations, and
fund transfers. Time-sensitive operations are particularly vulnerable. Users attempting to cancel orders before being filled or add margin before
liquidation can have their transactions blocked, forcing them to retry with a new tx_hash while market conditions worsen.

The impact depends on transaction visibility. In fully private operator infrastructure with trusted transaction submission, this risk is mitigated.
However, any public mempool visibility, RPC logging, or blockchain explorer access before transaction finalization exposes the tx_hash to
potential front-runners. Additionally, a malicious or compromised operator could selectively deny service to specific users.

Recommendation: This issue would be mitigated by not registering any tx_hash through functions directly callable by the user, i.e.
cancel_order() . To resolve this issue, consider computing the tx_hash on-chain by hashing a unique set of transaction parameters.

DIP-6
Misleading Documentation Regarding Liquidations in Delisted
Markets

• Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 85359e49d94a7d10ee986e7c97b7323199aab339 .

File(s) affected: perpetual.move

Description: The documentation for perpetual::delist_perpetual() states that "Liquidations continue (prevents bankruptcy)" after a
market is delisted. However, the code explicitly blocks liquidations via assert!(!perpetual::delisted(perp)) in
exchange::liquidate() . The developers have confirmed that liquidations are indeed intended to stop, and the documentation is incorrect.

Recommendation: Update the documentation for perpetual::delist_perpetual() to remove the documentation saying that liquidations
continue even after market delisting.

DIP-7
Inconsistent Rounding in apply_isolated_margin() Functions Favors
Users in some Cases

• Low Mitigated

Update
Marked as "Fixed" by the client.
Addressed in: 54e5e80878a4681706922b665ad5f471d91878d5 , 979b9692417943b0544086f9d38fb516aadcf390 .

Alert
The client adjusted the rounding behavior for the specific examples highlighted in this finding. However, additional calculations within
apply_isolated_margin() still rely on implicit integer division rounding and were not updated. We strongly recommend reviewing

all divisions in apply_isolated_margin() and explicitly defining the intended rounding direction for each calculation. Even when
rounding down is the correct behavior, this should be clearly documented to make the assumption explicit and prevent future
inconsistencies or regressions.

File(s) affected: isolated_trading.move , isolated_liquidation.move , isolated_adl.move

Description: In the apply_isolated_margin functions across isolated_trading , isolated_liquidation , and isolated_adl ,
integer arithmetic is used for margin calculations. While rounding generally favors the protocol (e.g., when reducing positions, the released
margin is rounded down), there are cases where it favors the user.

For example, in isolated_trading::apply_isolated_margin (Case 1: Open/Increase):

// margin per unit = price * mro
margin_per_unit = library::base_mul(fill.price, mro);

// funds = qty * (margin_per_unit + fee_per_unit)
funds_flow = s128::from(library::base_mul(fill.quantity, margin_per_unit + fee_per_unit), true);

library::base_mul() rounds down. This means margin_per_unit is rounded down, and funds_flow (the amount the user pays) is
further rounded down. Consequently, the user pays slightly less margin than the exact theoretical requirement.

While the discrepancy is very small, consistent rounding favoring the protocol is a standard security practice to prevent any potential for
systematic exploitation or invariant breakage over time. As demonstrated by the recent Balancer hack, even small rounding errors, when
exploited at scale or in specific edge cases, can lead to significant protocol losses.

Recommendation: Review all margin calculations in apply_isolated_margin() and ensure that rounding always favors the protocol.
When calculating amounts the user pays (e.g., opening positions), round up.
When calculating amounts the user receives (e.g., closing positions, reducing margin), round down.

DIP-8 Revoked Exchange Manager Caps Retain Partial Access • Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 8d82558b66daf90dd2700f5b4555e213752db4f0 .

File(s) affected: roles.move , perpetual.move

Description: The roles::set_exchange_manager() function issues a new ExchangeManagerCap without invalidating the previous one.
While most privileged functions validate the cap against access control list in the ProtocolConfig , the functions
perpetual::transfer_insurance_fund_from_active_to_security() and
perpetual::transfer_insurance_fund_from_security_to_active() only check for the cap's existence, allowing holders of revoked

caps to continue performing these operations. This effectively creates a two-tier permission system where access to insurance fund transfers
can never be revoked, and it is difficult to retrace which actors retain partial access.

Recommendation: If the intent is to have a distinct role for insurance fund operations, introduce a dedicated capability (e.g.,
InsuranceOperatorCap). Otherwise, ensure all functions requiring ExchangeManagerCap call roles::check_manager_validity() to

verify the cap is currently active.

DIP-9 Funding Rates Can Continue to Accrue After Delisting • Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 61a9e639219efd051f063728c7b09160f107b6e3 .

File(s) affected: perpetual.move

Description: The documentation of the perpetual::delist_perpetual() function states that "Funding rates stop accruing" after a market
is delisted. However, perpetual::set_funding_rate() does not check the delisted status. A funding rate operator can continue to call
this function, updating the global funding index. Since exchange::close_position() settles funding against this global index, users closing
positions later could pay significantly more funding than those closing earlier, depending on operator actions. Currently users have to trust the
funding rate operator to not update funding rate after delisting.

Recommendation: In the perpetual::set_funding_rate() function, enforce that the perp is not delisted when updating the funding rate.

DIP-10 Hardcoded Oracle Staleness Threshold • Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

ORACLE_PRICE_MAX_AGE is not used on-chain to ensure the freshness of oracle prices, but rather as a
final safeguard to confirm that the oracle provider is not down. When executing critical functions such
as trade, liquidate, and deleverage, our operator will check the freshness of oracle prices and update

https://blog.trailofbits.com/2025/11/07/balancer-hack-analysis-and-guidance-for-the-defi-ecosystem/

the oracle price data. Currently, we only utilize the Pyth oracle, which fully leverages Pyth’s price
update mechanism.

File(s) affected: contracts/sources/library.move

Description: The protocol uses a global constant ORACLE_PRICE_MAX_AGE of 60 seconds for all Pyth price feeds in
library::get_oracle_price() . Different assets may have different update frequencies or network conditions. A single hardcoded value

might be too strict for less liquid assets (causing transaction failures) or too loose for highly volatile assets.

Recommendation: Store the max age threshold in the Perpetual struct or ProtocolConfig to allow per-market configuration. Additionally,
implement administrative functions to update this threshold, allowing operators to adjust it if the initial value proves too strict or too loose.

DIP-11 Transaction Hash Index Pollution • Low Mitigated

Update
Marked as "Mitigated" by the client.
Addressed in: 7d2cb0ed1c29ae8e666fea30b63fb04171da5103 .
The client provided the following explanation:

similar to DIP-6, not registry tx_hash through functions directly callable by user

File(s) affected: sub_accounts.move

Description: The protocol maintains a platform-level global transaction index through TxIndexer to track all on-chain interactions. However,
since tx_hash values are arbitrary user input without content verification, malicious or careless users can pollute this index with garbage
values. The TxIndexer.map stores every submitted tx_hash permanently in an unbounded table with no cleanup mechanism.

While the development team intends tx_hash to serve as unique identifiers for legitimate transactions, nothing prevents users from submitting
random or sequential values or even replaying the same payload with a different hash. An attacker could spam the system with bogus tx_hash
values to bloat storage.

This issue does not create direct security vulnerabilities but impacts operational costs and index quality. Off-chain indexers and monitoring
systems relying on this global transaction index may need to filter or validate entries to distinguish legitimate transaction identifiers from noise.

Recommendation: For order-related operations, calculate the order hash using the existing library::get_hash() function, which is
cryptographically bound to the signed order. For other replay-sensitive operations, similarly construct a hash on-chain from the signed
parameters (similar to recommendation in DIP-6).

DIP-12
Multiple S128 Helpers Can Produce Negative Zero Representation

• Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 41dad46bd1bb99ca2af41ac9506ee2a28513a238 .

File(s) affected: signed_int128.move

Description: Several helpers in s128 can produce a 'negative zero' value, which is inconsistent with treating zero as always positive. This
inconsistency can lead to subtle bugs where downstream code assumes all zero values have sign == true .

Recommendation: Normalize zero across all helpers so that value == 0 always implies sign == true . Adjust the branch conditions or add
a normalization step to ensure consistency.

DIP-13 Unwithdrawable Dust Accumulation in Bank • Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 3b3b82a1416250f7394a5767b4a23f4ba94160bc .

File(s) affected: bank.move

Description: When users call withdraw_all() , some dust will remain in the contract that can never be withdrawn. The dust accrues due to
the fact that 3 decimals of precision are removed. While the dust is negligible for a single user operation, dust may accumulate over time.

Recommendation: We recommend removing the rounding and working with asset-specific decimals.

DIP-14 Incorrect Margin Ratio for price = 0 • Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 1129233c721840a8ea4746fb2b9bf11f43fb39f8 .

File(s) affected: position.move

Description: When the asset price is zero, the compute_margin_ratio() function will incorrectly return a margin of 1.0. This means that long
positions, which are actually underwater (MR of minus infinity), will appear to have a margin of 1.0. While this should not occur in practice, edge
cases may exist.

Recommendation: We recommend specifically handling this edge case of position_value == 0 , instead of only calculating the
margin_ratio when position_value > 0 .

DIP-15 Several Bank s Can Exist for the Same Currency • Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

We can ensure create_bank can only be called once by the project administrator during contract
deployment, and will not be called again thereafter.

File(s) affected: bank.move

Description: The create_bank() function allows the ExchangeManagerCap to create a shared Bank object for a Coin T . However,
there is no check to ensure that a Bank for T already exists. If several Bank s for the same Coin T existed, this would lead to fund and
protocol fragementation.

Recommendation: We recommend creating a Singleton Registry to ensure a Bank object exists only once for each Coin T .

DIP-16
Insurance-First Liquidation Design Differs From Industry
Standard

• Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

This is a solution we have discussed after careful deliberation. We believe this solution is safer than
opening up liquidation permissions, because the insurance fund can accumulate positive premiums,
thereby having more capital to resist the directional risk . Under the solution you proposed, the
insurance fund only takes over insolvent positions; the directional risk still remain, and the
insurance fund is exposed to higher risks.

File(s) affected: exchange.move , isolated_liquidation.move

Description: The protocol routes all liquidations through the insurance fund, which takes over positions and relies on an off-chain automated
engine to close them via regular trades. This differs from industry-standard perpetual DEXs (GMX, dYdX, Hyperliquid) where liquidations are
matched against orderbook liquidity first, with insurance funds only absorbing unmatched bad debt. Under the insurance-first design, market
makers never see liquidation flow, potentially disadvantaging them compared to traditional orderbook-first systems. The insurance fund
accumulates directional risk whenever liquidation closures lag behind new liquidations, even during normal volatility when orderbook liquidity
exists.

The team's rationale centers on concerns about thin orderbook liquidity, and their off-chain engine is designed to immediately match insurance
positions against the orderbook. However, this creates a critical operational dependency where the insurance fund becomes the required
intermediary for all liquidations rather than a last-resort backstop. If the off-chain engine experiences delays (network congestion, orderbook

depth constraints), the insurance fund accumulates positions and directional exposure that would otherwise be absorbed directly by market
makers.

Recommendation: Consider implementing hybrid liquidation where liquidations with positive premiums (remaining equity) can be executed
permissionlessly by external liquidators competing for the premium, while only negative premium liquidations (bad debt) route through the
insurance fund. This would align incentives with industry standards, reduce unnecessary directional risk for the insurance fund, and provide
market makers access to liquidation flow.

DIP-17 Error Code 1 Used Twice • Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: f16ab4b812a1ddf5cf168df59f556d89dc700627 .

File(s) affected: error.move

Description: The system assigns error code 1 to two different errors: invalid_protocol_version() and
min_price_greater_than_zero() . This duplication can cause confusion and make it harder to correctly identify the source of an error.

Recommendation: Consider assigning a different error code to one of these errors to ensure each error remains uniquely identifiable.

DIP-18
The trade_margin_settlement() Function Uses Incorrect Error Code for
Missing Accounts

• Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 06c96c4cf68cf7c15b8d9d24f161707af977c9cd .

File(s) affected: settlement.move

Description: In settlement::trade_margin_settlement() , the function checks if the maker and taker have bank accounts using
bank.exists_account() . However, if this check fails, it aborts with error::not_enough_balance_in_bank() instead of the more

appropriate error::user_has_no_bank_account() .

Recommendation: Update the assertions to use error::user_has_no_bank_account() when checking for account existence.

DIP-19
Insurance Transfer Limits Are Adjustable by the Same
ExchangeManagerCap that Performs the Transfers

• Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 8d82558b66daf90dd2700f5b4555e213752db4f0 .
The client provided the following explanation:

Same with [DIP-9]

File(s) affected: perpetual.move

Description: The function perpetual::transfer_insurance_fund_from_security_to_active() is restricted by amount limits and time
intervals to protect the security pool. However, the same ExchangeManagerCap required to call this function can also be used to modify these
limits via perpetual::set_insurance_fund_transfer_amount_limit() and
perpetual::set_insurance_fund_transfer_interval() . This means a compromised or malicious manager can bypass the safety

controls by first relaxing the limits and then draining the pool.

Recommendation: Consider separating the roles for fund transfers and parameter configuration.

DIP-20
Asymmetric Funding Debt Handling Between Long and
Short Positions

• Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

Although the handling of long and short positions differs, the underlying logic is correct. We do not
plan to make modifications for the time being.

File(s) affected: exchange.move

Description: The protocol handles unpaid funding debt asymmetrically between long and short positions during ADL execution (flag=3). While
long positions can accumulate unbounded debt by inflating oi_open , short positions have their debt capped at oi_open due to the unsigned
integer type constraint.

Long Positions (exchange.move:1160-1162):

if (is_long) {
 // Debt deferred indefinitely by inflating oi_open
 position::set_oi_open(user_pos, oi_open + settlement_amount);
}

For longs, unpaid funding increases oi_open , which reduces future PnL and increases bankruptcy price. This effectively defers the debt to be
paid when the position eventually closes.

Short Positions (exchange.move:1163-1175):

else {
 if (settlement_amount > oi_open) {
 // Debt exceeding oi_open is forgiven
 position::set_oi_open(user_pos, 0);
 emit(SettlementAmountNotPaidCompletelyEvent {
 amount: settlement_amount - oi_open,
 });
 } else {
 position::set_oi_open(user_pos, oi_open - settlement_amount);
 }
}

For shorts, oi_open (unsigned u128) cannot go negative. If funding debt exceeds oi_open , the excess is written off, meaning counterparty
traders owed this funding would not receive it.

While this would negatively impact the protocol, the condition settlement_amount > oi_open is practically unreachable because positions
are liquidated long before sufficient funding debt can accumulate. At the protocol's maximum 1% hourly funding rate, a position would need 100+
hours to accumulate debt exceeding oi_open , but margin depletion triggers liquidation within ~5 hours.

Nevertheless, the code asymmetry between long and short handling creates potential confusion.

Recommendation: While this code path is practically unreachable, if it were somehow triggered, the debt should not be written off. We
recommend applying the same unbounded debt-tracking approach to shorts as used for longs (though this would require changing oi_open to
a signed integer type, representing a significant architectural change).

DIP-21
Redundant Signature Verification on Order Cancellation

• Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: f81c70f7e7ad18f925b52f2f38fbb56914d00534 .

File(s) affected: order.move

Description: The cancel_order() function verifies that the creator or a sub-account has created a valid signature (without replay
protection). However, the function already verifies that the creator or a subaccount has submitted the order cancellation on-chain. As a result,
the signature check does not add any security feature on top.

Recommendation: We recommend removing the signature verification.

DIP-22
Hardcoded 6-Decimal Assumption in Bank Conversion

• Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

create_bank is invoked by the official party. We will ensure that the token has 6 decimal places, and
additional parameters need to be added to CoinMetadata. Note that subsequent contract upgrades will be
incompatible with this entry method.

File(s) affected: bank.move , library.move

Description: The Bank<T> contract is generic over coin type T but hardcodes decimal conversion assuming all coins have 6 decimals. The
convert_usdc_to_base_decimals() function unconditionally multiplies amounts by 1000 to convert from 6 decimals to the internal 1e9

base units.

If a bank is created for coins with different decimal counts (e.g., SUI with 9 decimals), the internal accounting will be inflated or deflated by
powers of 10:

9-decimal coins: Internal balances 1000x inflated
18-decimal coins: Internal balances divided by 1 billion

While this does not create an exploitable vulnerability (the system remains mathematically consistent since all users share the same conversion
factor), it creates several operational risks:

1. Misconfigured parameters: Default insurance fund transfer limits are set assuming 6-decimal coins. For 9-decimal coins, the effective limit
would be 1000x smaller than intended.

2. Off-chain confusion: Events and indexers would display balances that appear 1000x larger for 9-decimal coins.
3. Misleading generics: The Bank<T> generic type parameter suggests any coin type is supported, but only 6-decimal coins work as

designed.
The issue stems from the function name convert_usdc_to_base_decimals() explicitly referencing USDC, yet being used for all coin types
in the generic Bank<T> contract.

The team has confirmed that they intend to only support USDC as an asset for now.

Recommendation: Since only USDC should be supported, we recommend adding validation in create_bank() to ensure only 6-decimal coins
can be used:

let decimals = coin::get_decimals<T>();
assert!(decimals == 6, error::unsupported_coin_decimals());

DIP-23 Possibility of Error Code Collision • Informational Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

Complete checks have been implemented for all locations where special values need to be passed in.

File(s) affected: error.move

Description: The dipcoin::error module assigns unique error codes to each error by combining a base error code with a variable
component derived from specific error conditions. However, these variable components are all unbounded u64 values, provided as a function
parameter. This creates a risk of error code collisions when an unexpected or invalid number is passed to an error code function.

For example, error::order_is_canceled() assumes the is_taker parameter is either 0 or 1, which is true under normal conditions. But if
a mistake leads to passing a value like 2, the resulting error code may overlap with an entirely different error such as
error::order_has_invalid_signature() . This ambiguity makes debugging significantly harder and reduces the maintainers’ ability to

accurately diagnose issues during the system’s operation.

Recommendation: Consider using enums and booleans instead of raw u64 parameters. Even though the system defines many different error
codes, the variable components come from a small set of conceptual categories. Introducing enums (e.g., an Offset enum) and converting

flags like isTaker or isMaker into booleans would eliminate this class of collision. Alternatively, strict boundary checks could be added to
validate error parameters before constructing the final error code.

DIP-24 Redundant Additional Check for Insurance Pool • Informational Fixed

Description: The isolated_trading::apply_isolated_margin() function makes sure that the insurance fund cannot create new
positions, increase existing positions, or flip the position direction. Nevertheless, exchange::trade() employs addtional checks that are
ineffective. These checks would allow the insurance fund to increase their position, which is unintended:

if (insurance_active_pool == maker_address || insurance_active_pool == taker_address) {
 assert!(perp.positions().borrow(insurance_active_pool).size() > 0,
 error::insurance_active_account_can_not_open_new_position());
};

Recommendation: While the insurance fund cannot effectively increase their position due to the checks in apply_isolated_margin() , we
recommend removing the redundant code in exchange::trade() .

Auditor Suggestions
S1 Validate Input Parameters Fixed

Update
Marked as "Fixed" by the client.
Addressed in: b0119017473969b7d4afe68c350a0113a9f81113 .

File(s) affected: exchange.move , perpetual.move , evaluator.move , position.move

Description: Several functions lack input validation for critical parameters, which could lead to unexpected behavior, execution failures, or invalid
state configurations.

exchange::apply_funding_rate() : The flag parameter is not validated to be within the expected range (0-3). Invalid values
default to the ADL branch. It should be validated with assert!(flag <= 3) .
perpetual::set_max_oi_open() and evaluator::set_max_oi_open() : The length of the max_limit vector is not checked

against the maximum leverage allowed by the IMR. If the vector is too short, high-leverage positions might bypass open-interest checks.
It should be validated that max_limit covers all possible leverage tiers defined by the IMR.
position::remove_empty_positions() : The pos_keys vector length is not capped, potentially causing the transaction to hit the

dynamic field access limit (1000) and fail. It should be validated with assert!(pos_keys.length() <= 1000) .
perpetual::set_maker_fee() and perpetual::set_taker_fee() : Fees are not validated to be within 0-100% (0 to 1e9),

allowing for invalid fee configurations. They should be validated with assert!(fee <= 1_000_000_000) .

Recommendation: Add input validation checks to the functions above.

S2 Combine Oracle Price and Exponent Retrieval Fixed

Update
Marked as "Fixed" by the client.
Addressed in: d6a291b3762f8914e82fe0012f04f2df7b35e15a , 5f8d30618ad7d4463c5bff9668a641dd23ece674 .

File(s) affected: library.move , perpetual.move

Description: The library module splits price retrieval into get_oracle_price() and get_oracle_base() . The code comments claim
this allows caching the exponent to optimize gas. However, in perpetual::update_oracle_price() , both functions are called sequentially
for every update, meaning no caching is actually performed. Furthermore, both functions independently call
pyth::get_price_no_older_than() , causing the protocol to pay for the staleness check and data retrieval twice for every price update.

Recommendation: Combine these into a single function that returns both the price and the exponent from a single Pyth call to reduce gas costs.

S3
Shared Event Definition Causes Aborts and Unnecessary State Creation

Mitigated

Update

Marked as "Fixed" by the client.
Addressed in: f87bfa9a7ee371bc2534db3dcc55920b7dceaa16 .

File(s) affected: bank.move

Description: The BankBalanceUpdateEvent is used for deposits, withdrawals, and internal transfers. It requires emitting both
src_balance and dest_balance regardless of the operation type.

Fixed In withdraw() and withdraw_all() , the code attempts to read dest_balance from the accounts table. If the destination
address (e.g., a user's wallet) does not have a registered bank account, this lookup fails and the transaction aborts. This prevents users
from withdrawing to addresses that have not interacted with the bank before.
Unresolved In deposit_internal() , the code forces the creation of a bank account for the sender (via
create_account_if_not_exist) even if they are just depositing coins and don't need an internal balance state. This is likely done

just to satisfy the event's requirement to emit src_balance .

Recommendation: Split the BankBalanceUpdateEvent into separate events (DepositEvent , WithdrawEvent , TransferEvent) that
only include fields relevant to the specific action. This removes the need to look up or create accounts for addresses that are not participating in
the internal accounting of that specific operation.

S4
Simplify Role Management by Removing Redundant Capabilities or
Centralizing Access Control

Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

The main point is that permission-related function calls should take the corresponding Cap as the first
parameter — this is the standard practice in Sui. That said, whether you make this change or not
doesn’t have a big impact.

File(s) affected: roles.move , protocol.move

Description: The current system uses a hybrid approach where roles (Exchange Manager, Deleveraging Operator, Funding Rate Operator) are
managed by minting new Capability objects and storing their IDs in ProtocolConfig . This adds unnecessary complexity. Since the
ExchangeAdmin controls these assignments, a simpler Access Control List (ACL) storing authorized addresses in ProtocolConfig would

achieve the same security with less overhead.

Recommendation: Refactor role management to either:
1. Use a pure ACL pattern where ProtocolConfig stores the addresses of authorized operators, removing the need for

ExchangeManagerCap , DeleveragingCap , and FundingRateCap objects. Or
2. Use standard transferable Capabilities where the current holder can rotate the key by transferring the object, removing the need for the

admin to mint new ones and update the config.

S5 Use BCS Encoding Instead of JSON for Order Serialization Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

It is designed as JSON primarily to cooperate with the frontend, so that when the user's wallet pops
up, order details can be displayed through the JSON string.

File(s) affected: order.move

Description: The current implementation manually constructs a JSON string for order serialization in order::get_serialized_order() . This
is gas-inefficient and prone to formatting errors (e.g., whitespace or field ordering mismatches). Sui Move provides native support for Binary
Canonical Serialization (BCS), which is faster, cheaper, and deterministic.

Recommendation: Replace the manual JSON string construction with BCS encoding. This will significantly reduce the gas cost of order
verification and simplify the codebase.

S6 Redundant Order Flags Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

Because considering that deleting extra fields during SUI contract upgrades is not allowed, this impact
is minimal.

File(s) affected: order.move

Description: The Order struct has a redundant encoding of all flags, thereby redundantly including the data twice.

Recommendation: We recommend removing flag encoding if it remains unused.

S7 Rename library::get_public_address() Local Variable Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 13222acb4cdc8dcd5def9c1545c8a87a59c04e4c .

File(s) affected: library.move

Description: The library::get_public_address() function declares a local variable named address of type address . Since the
variable name exactly matches the address type keyword, this can create ambiguity and may be disallowed in future compiler versions.

Recommendation: Consider renaming the local variable to avoid conflicts and improve clarity.

Definitions
High severity – High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

Medium severity – Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

Low severity – The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low
impact in view of the client's business circumstances.

Informational – The issue does not pose an immediate risk, but is relevant to security best practices or Defence in Depth.

Undetermined – The impact of the issue is uncertain.

Fixed – Adjusted program implementation, requirements or constraints to eliminate the risk.

Mitigated – Implemented actions to minimize the impact or likelihood of the risk.

Acknowledged – The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1) comments, documentation, README, FAQ; 2) business processes; 3) analyses
showing that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

Test Suite Results
Test data output was obtained with sui move test --skip-fetch-latest-git-deps . The Sui test suite contains 82 tests which execute
successfully.

Fix Review Update

The Sui test suite was expanded from 82 tests to 275 tests during the audit. Therefor we increased the test quality score from low to medium.

sui move test -p contracts --skip-fetch-latest-git-deps
INCLUDING DEPENDENCY Pyth
INCLUDING DEPENDENCY Wormhole
INCLUDING DEPENDENCY Sui
INCLUDING DEPENDENCY MoveStdlib
BUILDING dipcoin
Running Move unit tests
[PASS] dipcoin::library_tests::test_add_intent_bytes_and_hash_changes_with_input

[PASS] dipcoin::funding_rate_tests::test_compute_global_index_multiple_hours
[PASS] dipcoin::insurance_fund_tests::test_create_insurance_fund_active_account_zero
[PASS] dipcoin::adl_tests::test_adl_all_or_nothing_failure_maker
[PASS] dipcoin::bank_tests::test_account_existence
[PASS] dipcoin::liquidation_tests::test_liquidation_all_or_nothing_failure
[PASS] dipcoin::isolated_trading_tests::test_flip_position
[PASS] dipcoin::exchange_tests::test_add_margin_balance_conservation
[PASS] dipcoin::library_tests::test_base_div
[PASS] dipcoin::funding_rate_tests::test_compute_global_index_no_time_change
[PASS] dipcoin::library_tests::test_base_div_by_zero
[PASS] dipcoin::funding_rate_tests::test_compute_global_index_one_hour
[PASS] dipcoin::insurance_fund_tests::test_create_insurance_fund_same_accounts
[PASS] dipcoin::adl_tests::test_adl_all_or_nothing_failure_taker
[PASS] dipcoin::bank_tests::test_create_bank
[PASS] dipcoin::liquidation_tests::test_liquidation_liquidator_has_long_position_add_position
[PASS] dipcoin::isolated_trading_tests::test_mtb_violation_should_fail
[PASS] dipcoin::exchange_tests::test_add_margin_increases_position_margin
[PASS] dipcoin::library_tests::test_base_mul
[PASS] dipcoin::funding_rate_tests::test_compute_global_index_partial_hour
[PASS] dipcoin::library_tests::test_ceil
[PASS] dipcoin::insurance_fund_tests::test_create_insurance_fund_security_account_zero
[PASS] dipcoin::funding_rate_tests::test_compute_global_index_price_impact
[PASS] dipcoin::adl_tests::test_adl_all_or_nothing_success
[PASS] dipcoin::bank_tests::test_deposit_and_balance
[PASS] dipcoin::liquidation_tests::test_liquidation_liquidator_has_long_position_flip_position
[PASS] dipcoin::exchange_tests::test_add_margin_no_position_should_fail
[PASS] dipcoin::isolated_trading_tests::test_open_and_increase_same_side
[PASS] dipcoin::library_tests::test_ceil_with_zero_m
[PASS] dipcoin::funding_rate_tests::test_funding_rate_initialization
[PASS] dipcoin::library_tests::test_compute_mro
[PASS] dipcoin::insurance_fund_tests::test_create_insurance_fund_success
[PASS] dipcoin::adl_tests::test_adl_insurance_fund_insufficient_for_bankruptcy
[PASS] dipcoin::bank_tests::test_deposit_insufficient_coin
[PASS] dipcoin::liquidation_tests::test_liquidation_liquidator_has_long_position_flip_position_loss
[PASS] dipcoin::exchange_tests::test_add_margin_when_delisted_should_fail
[PASS] dipcoin::isolated_trading_tests::test_post_only_ioc_restrictions_fail
[PASS] dipcoin::funding_rate_tests::test_funding_rate_lifecycle
[PASS] dipcoin::library_tests::test_compute_mro_zero_leverage
[PASS] dipcoin::funding_rate_tests::test_large_time_gaps
[PASS] dipcoin::insurance_fund_tests::test_create_insurance_fund_zero_interval
[PASS] dipcoin::library_tests::test_convert_usdc_to_base_decimals
[PASS] dipcoin::adl_tests::test_adl_insurance_fund_zero_balance
[PASS] dipcoin::bank_tests::test_deposit_to_zero_address
[PASS] dipcoin::liquidation_tests::test_liquidation_liquidator_has_long_position_reduce_position
[PASS] dipcoin::exchange_tests::test_add_margin_wrong_sender_should_fail
[PASS] dipcoin::isolated_trading_tests::test_reduce_only_partial_close
[PASS] dipcoin::funding_rate_tests::test_maximum_funding_rate
[PASS] dipcoin::library_tests::test_get_hash
[PASS] dipcoin::insurance_fund_tests::test_create_insurance_fund_zero_limit
[PASS] dipcoin::adl_tests::test_adl_maker_not_underwater
[PASS] dipcoin::funding_rate_tests::test_new_index_creation
[PASS] dipcoin::library_tests::test_get_public_address_format
[PASS] dipcoin::bank_tests::test_deposit_when_bank_paused
[PASS]
dipcoin::liquidation_tests::test_liquidation_liquidator_has_long_position_reduce_position_loss
[PASS] dipcoin::exchange_tests::test_add_margin_zero_amount_should_fail
[PASS] dipcoin::isolated_trading_tests::test_self_trade_fees_only
[PASS] dipcoin::library_tests::test_min
[PASS] dipcoin::funding_rate_tests::test_precision_limits
[PASS] dipcoin::evaluator_tests::test_mtb_long_violation_should_fail
[PASS] dipcoin::insurance_fund_tests::test_multiple_parameter_updates
[PASS] dipcoin::adl_tests::test_adl_multiple_rounds_insurance_fund
[PASS] dipcoin::bank_tests::test_deposit_with_change
[PASS] dipcoin::library_tests::test_round
[PASS] dipcoin::liquidation_tests::test_liquidation_liquidator_has_short_position_add_position
[PASS] dipcoin::exchange_tests::test_add_margin_zero_size_position_should_fail
[PASS] dipcoin::funding_rate_tests::test_zero_funding_rate
[PASS] dipcoin::evaluator_tests::test_price_below_min_should_fail
[PASS] dipcoin::library_tests::test_round_down
[PASS] dipcoin::insurance_fund_tests::test_set_active_account_same_as_security
[PASS] dipcoin::evaluator_tests::test_qty_below_min_should_fail
[PASS] dipcoin::bank_tests::test_deposit_zero_amount

[PASS] dipcoin::adl_tests::test_adl_normal_case
[PASS] dipcoin::liquidation_tests::test_liquidation_liquidator_has_short_position_flip_position
[PASS] dipcoin::protocol_tests::test_cap_getters_and_settlement_ids_getter
[PASS] dipcoin::library_tests::test_sub
[PASS] dipcoin::exchange_tests::test_adjust_leverage_balance_conservation
[PASS] dipcoin::evaluator_tests::test_step_size_violation_should_fail
[PASS] dipcoin::library_tests::test_to_1x9_vec
[PASS] dipcoin::insurance_fund_tests::test_set_active_account_success
[PASS] dipcoin::evaluator_tests::test_tick_size_violation_should_fail
[PASS] dipcoin::bank_tests::test_get_balance_nonexistent_account
[PASS] dipcoin::adl_tests::test_adl_same_side_positions
[PASS] dipcoin::protocol_tests::test_check_basic_should_fail_when_paused
[PASS] dipcoin::liquidation_tests::test_liquidation_liquidator_has_short_position_flip_position_loss
[PASS] dipcoin::exchange_tests::test_adjust_leverage_margin_excess_branch
[PASS] dipcoin::library_tests::test_verify_signature_branches_return_status_and_prefix
[PASS] dipcoin::evaluator_tests::test_verify_functions_on_trade_checks
[PASS] dipcoin::insurance_fund_tests::test_set_active_account_zero_address
[PASS] dipcoin::s128_tests::test_add
[PASS] dipcoin::bank_tests::test_large_amount_operations
[PASS] dipcoin::adl_tests::test_adl_taker_underwater
[PASS] dipcoin::protocol_tests::test_check_is_normal_should_fail_when_paused
[PASS] dipcoin::liquidation_tests::test_liquidation_liquidator_has_short_position_reduce_position
[PASS] dipcoin::exchange_tests::test_adjust_leverage_margin_shortfall_branch
[PASS] dipcoin::s128_tests::test_add_u128
[PASS] dipcoin::roles_tests::test_add_privileged_addresses_empty_should_fail
[PASS] dipcoin::insurance_fund_tests::test_set_amount_limit_success
[PASS] dipcoin::s128_tests::test_comparison_between_s128
[PASS] dipcoin::bank_tests::test_multi_user_operations
[PASS] dipcoin::adl_tests::test_adl_with_insurance_fund_as_maker
[PASS] dipcoin::protocol_tests::test_check_version_ok_and_privileged_getter_contains
[PASS]
dipcoin::liquidation_tests::test_liquidation_liquidator_has_short_position_reduce_position_loss
[PASS] dipcoin::exchange_tests::test_adjust_leverage_no_position_should_fail
[PASS] dipcoin::roles_tests::test_check_deleveraging_operator_validity_success
[PASS] dipcoin::s128_tests::test_comparison_with_u128
[PASS] dipcoin::insurance_fund_tests::test_set_amount_limit_zero
[PASS] dipcoin::bank_tests::test_multiple_deposits
[PASS] dipcoin::adl_tests::test_adl_with_insurance_fund_as_maker_with_enough_balance
[PASS] dipcoin::protocol_tests::test_pause_and_resume
[PASS] dipcoin::s128_tests::test_div_u128
[PASS] dipcoin::liquidation_tests::test_liquidation_partial_liquidation_long_position_at_mmr
[PASS] dipcoin::exchange_tests::test_adjust_leverage_updates_mro
[PASS] dipcoin::roles_tests::test_check_funding_rate_operator_validity_success
[PASS] dipcoin::insurance_fund_tests::test_set_security_account_same_as_active
[PASS] dipcoin::s128_tests::test_edge_cases
[PASS] dipcoin::bank_tests::test_multiple_withdrawals
[PASS] dipcoin::adl_tests::test_adl_with_insurance_fund_as_taker
[PASS] dipcoin::protocol_tests::test_set_funding_rate_cap_id_and_remove_settlement_cap_id
[PASS] dipcoin::liquidation_tests::test_liquidation_partial_liquidation_long_position_below_mmr
[PASS] dipcoin::s128_tests::test_from
[PASS] dipcoin::exchange_tests::test_adjust_leverage_when_delisted_should_fail
[PASS] dipcoin::roles_tests::test_check_insurance_operator_validity_invalid_cap_should_fail
[PASS] dipcoin::insurance_fund_tests::test_set_security_account_success
[PASS] dipcoin::s128_tests::test_from_subtraction
[PASS] dipcoin::bank_tests::test_set_withdrawal_status
[PASS] dipcoin::protocol_tests::test_set_maker_taker_gas_fee
[PASS]
dipcoin::apply_funding_rate_tests::test_apply_funding_rate_for_insurance_active_position_pay_funding_fee
[PASS] dipcoin::liquidation_tests::test_liquidation_partial_liquidation_short_position_at_mmr
[PASS] dipcoin::exchange_tests::test_adjust_leverage_wrong_sender_should_fail
[PASS] dipcoin::roles_tests::test_check_insurance_operator_validity_success
[PASS] dipcoin::s128_tests::test_mul_u128
[PASS] dipcoin::insurance_fund_tests::test_set_security_account_zero_address
[PASS] dipcoin::s128_tests::test_negate
[PASS] dipcoin::protocol_tests::test_settlement_operator_add_remove
[PASS] dipcoin::bank_tests::test_transfer
[PASS] dipcoin::liquidation_tests::test_liquidation_partial_liquidation_short_position_below_mmr
[PASS]
dipcoin::apply_funding_rate_tests::test_apply_funding_rate_for_insurance_active_position_receive_funding_
fee
[PASS] dipcoin::exchange_tests::test_adjust_leverage_zero_should_fail
[PASS] dipcoin::roles_tests::test_check_settlement_operator_validity_success

[PASS] dipcoin::insurance_fund_tests::test_set_transfer_interval_success
[PASS] dipcoin::s128_tests::test_negative_number
[PASS] dipcoin::perpetual_admin_tests::test_delist_perpetual
[PASS] dipcoin::bank_tests::test_transfer_insufficient_balance
[PASS] dipcoin::s128_tests::test_one
[PASS] dipcoin::liquidation_tests::test_liquidation_permission_insurance_fund_only_1
[PASS] dipcoin::exchange_tests::test_close_position_after_delist
[PASS] dipcoin::roles_tests::test_create_settlement_operator
[PASS] dipcoin::insurance_fund_tests::test_set_transfer_interval_zero
[PASS] dipcoin::apply_funding_rate_tests::test_apply_funding_rate_for_normal_position
[PASS] dipcoin::s128_tests::test_positive_number
[PASS] dipcoin::perpetual_admin_tests::test_delist_twice_should_fail
[PASS] dipcoin::bank_tests::test_withdraw
[PASS] dipcoin::liquidation_tests::test_liquidation_permission_insurance_fund_only_2
[PASS] dipcoin::s128_tests::test_positive_value
[PASS] dipcoin::exchange_tests::test_close_position_no_position_should_fail
[PASS] dipcoin::roles_tests::test_insurance_operator_update_replaces_old_cap
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_active_to_security
[PASS] dipcoin::apply_funding_rate_tests::test_apply_funding_rate_no_position
[PASS] dipcoin::s128_tests::test_sub
[PASS] dipcoin::perpetual_admin_tests::test_insurance_fund_limits_and_intervals
[PASS] dipcoin::bank_tests::test_withdraw_all
[PASS] dipcoin::liquidation_tests::test_liquidation_permission_insurance_fund_only_3
[PASS] dipcoin::exchange_tests::test_close_position_requires_delist_should_fail
[PASS] dipcoin::s128_tests::test_sub_u128
[PASS] dipcoin::roles_tests::test_manager_updates_and_privileged_addresses
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_active_to_security_exceeds_original_limit
[PASS]
dipcoin::apply_funding_rate_tests::test_apply_funding_rate_normal_position_insufficient_margin
[PASS] dipcoin::perpetual_admin_tests::test_remove_empty_positions_noop
[PASS] dipcoin::s128_tests::test_zero
[PASS] dipcoin::bank_tests::test_withdraw_all_disabled
[PASS] dipcoin::liquidation_tests::test_liquidation_self_liquidation_forbidden
[PASS] dipcoin::roles_tests::test_pause_and_resume_success
[PASS] dipcoin::exchange_tests::test_close_position_zero_size_should_fail
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_active_to_security_insufficient_balance
[PASS] dipcoin::apply_funding_rate_tests::test_apply_funding_rate_same_index
[PASS] dipcoin::perpetual_admin_tests::test_set_all_risk_params
[PASS] dipcoin::settlement_tests::test_get_margin_left_short_position
[PASS] dipcoin::bank_tests::test_withdraw_all_to_zero_address
[PASS] dipcoin::liquidation_tests::test_liquidation_trigger_long_position_at_bankruptcy_price
[PASS] dipcoin::roles_tests::test_pause_twice_should_fail
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_active_to_security_zero_amount
[PASS] dipcoin::exchange_tests::test_create_perpetual_creates_accounts
[PASS] dipcoin::apply_funding_rate_tests::test_apply_funding_rate_sequential_applications
[PASS] dipcoin::perpetual_admin_tests::test_set_fee_and_gas_pool_addresses
[PASS] dipcoin::settlement_tests::test_get_max_removeable_margin_short_position
[PASS] dipcoin::bank_tests::test_withdraw_all_with_remainder
[PASS] dipcoin::liquidation_tests::test_liquidation_trigger_long_position_at_mmr
[PASS] dipcoin::roles_tests::test_remove_privileged_addresses_empty_should_fail
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_security_to_active_after_interval
[PASS] dipcoin::exchange_tests::test_create_perpetual_zero_fee_pool_should_fail
[PASS] dipcoin::perpetual_admin_tests::test_set_funding_rate_success
[PASS] dipcoin::settlement_tests::test_get_target_margin_short_position
[PASS]
dipcoin::apply_funding_rate_tests::test_apply_funding_rate_sequential_applications_comprehensive
[PASS] dipcoin::bank_tests::test_withdraw_all_with_zero_balance
[PASS] dipcoin::liquidation_tests::test_liquidation_trigger_long_position_below_bankruptcy_price
[PASS] dipcoin::roles_tests::test_remove_settlement_operator_success
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_security_to_active_at_limit
[PASS] dipcoin::exchange_tests::test_create_perpetual_zero_gas_pool_should_fail
[PASS] dipcoin::perpetual_admin_tests::test_set_insurance_pool_addresses
[PASS] dipcoin::settlement_tests::test_trade_margin_settlement_maker_account_not_exist_should_fail
[PASS] dipcoin::apply_funding_rate_tests::test_insurance_active_position_pay_funding_fee_adl_maker
[PASS] dipcoin::bank_tests::test_withdraw_disabled
[PASS] dipcoin::liquidation_tests::test_liquidation_trigger_long_position_below_mmr
[PASS] dipcoin::roles_tests::test_resume_without_pause_should_fail
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_security_to_active_exceeds_limit
[PASS] dipcoin::exchange_tests::test_deleverage_executes
[PASS] dipcoin::perpetual_admin_tests::test_set_max_allowed_funding_rate
[PASS] dipcoin::settlement_tests::test_trade_margin_settlement_taker_account_not_exist_should_fail
[PASS] dipcoin::apply_funding_rate_tests::test_insurance_active_position_pay_funding_fee_adl_taker

[PASS] dipcoin::bank_tests::test_withdraw_insufficient_balance
[PASS] dipcoin::roles_tests::test_set_exchange_admin_success
[PASS] dipcoin::liquidation_tests::test_liquidation_trigger_short_position_above_bankruptcy_price
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_security_to_active_insufficient_balance
[PASS] dipcoin::exchange_tests::test_deleverage_when_delisted_should_fail
[PASS] dipcoin::sub_accounts_tests::test_set_sub_account
[PASS] dipcoin::perpetual_admin_tests::test_set_special_fee_and_get_fee_priority
[PASS]
dipcoin::apply_funding_rate_tests::test_insurance_active_position_pay_funding_fee_liquidation_maker
[PASS] dipcoin::bank_tests::test_withdraw_to_zero_address
[PASS] dipcoin::sub_accounts_tests::test_set_sub_account_zero_address
[PASS] dipcoin::roles_tests::test_set_exchange_admin_zero_address_should_fail
[PASS] dipcoin::liquidation_tests::test_liquidation_trigger_short_position_at_bankruptcy_price
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_security_to_active_interval_not_met
[PASS] dipcoin::exchange_tests::test_deleverage_when_trading_not_permitted_should_fail
[PASS] dipcoin::sub_accounts_tests::test_validate_unique_tx
[PASS] dipcoin::perpetual_admin_tests::test_set_special_fee_zero_address_should_fail
[PASS]
dipcoin::apply_funding_rate_tests::test_insurance_active_position_pay_funding_fee_liquidation_taker
[PASS] dipcoin::bank_tests::test_withdraw_without_account
[PASS] dipcoin::roles_tests::test_set_exchange_manager_success
[PASS] dipcoin::sub_accounts_tests::test_validate_unique_tx_replay
[PASS] dipcoin::liquidation_tests::test_liquidation_trigger_short_position_at_mmr
[PASS] dipcoin::insurance_fund_tests::test_transfer_from_security_to_active_zero_amount
[PASS] dipcoin::exchange_tests::test_liquidate_executes
[PASS]
dipcoin::apply_funding_rate_tests::test_insurance_active_position_pay_funding_fee_trading_maker
[PASS] dipcoin::perpetual_admin_tests::test_special_fee_priority_and_zero_address_failures
[PASS] dipcoin::position_tests::test_compute_pnl_per_unit_and_bankruptcy_price
[PASS] dipcoin::bank_tests::test_withdraw_zero_amount
[PASS] dipcoin::roles_tests::test_set_funding_rate_operator_success
[PASS] dipcoin::liquidation_tests::test_liquidation_trigger_short_position_below_mmr
[PASS] dipcoin::order_tests::test_cancel_order_success_and_verify_status
[PASS] dipcoin::position_tests::test_create_position_and_remove_empty_positions_cleanup
[PASS] dipcoin::exchange_tests::test_liquidate_when_delisted_should_fail
[PASS]
dipcoin::apply_funding_rate_tests::test_insurance_active_position_pay_funding_fee_trading_taker
[PASS] dipcoin::perpetual_admin_tests::test_trading_permit_toggle_and_default_fees
[PASS] dipcoin::position_tests::test_getters_setters_and_average_price_long_short
[PASS] dipcoin::roles_tests::test_set_insurance_operator_success
[PASS] dipcoin::liquidation_tests::test_multiple_liquidations
[PASS] dipcoin::order_tests::test_create_order_idempotent_and_verify_state
[PASS] dipcoin::exchange_tests::test_liquidate_when_trading_not_permitted_should_fail
[PASS] dipcoin::position_tests::test_is_undercollat_and_verify_collat_checks_paths
[PASS] dipcoin::roles_tests::test_set_insurance_operator_zero_address_should_fail
[PASS] dipcoin::position_tests::test_verify_collat_checks_fail_direction_or_size_rule
[PASS] dipcoin::order_tests::test_expiry_and_leverage_checks_success
[PASS] dipcoin::exchange_tests::test_liquidate_with_taker_margin_transfer
[PASS] dipcoin::order_tests::test_expiry_should_fail_when_too_old
[PASS] dipcoin::exchange_tests::test_remove_margin_balance_conservation
[PASS] dipcoin::order_tests::test_flag_and_pack_and_getters_and_to_1x9
[PASS] dipcoin::exchange_tests::test_remove_margin_decreases_position_margin
[PASS] dipcoin::order_tests::test_get_serialized_order_deterministic
[PASS] dipcoin::exchange_tests::test_remove_margin_no_position_should_fail
[PASS] dipcoin::order_tests::test_get_serialized_order_orderbook_only_true_false
[PASS] dipcoin::exchange_tests::test_remove_margin_when_delisted_should_fail
[PASS] dipcoin::order_tests::test_leverage_mro_mismatch_should_fail
[PASS] dipcoin::exchange_tests::test_remove_margin_wrong_sender_should_fail
[PASS] dipcoin::order_tests::test_leverage_zero_should_fail
[PASS] dipcoin::exchange_tests::test_remove_margin_zero_amount_should_fail
[PASS] dipcoin::order_tests::test_verify_and_fill_order_overfill_should_fail
[PASS] dipcoin::exchange_tests::test_remove_margin_zero_size_position_should_fail
[PASS] dipcoin::order_tests::test_verify_and_fill_order_qty_success_and_overfill
[PASS] dipcoin::exchange_tests::test_sum_transaction_balance_variants
[PASS] dipcoin::order_tests::test_verify_and_fill_reduce_only_invalid_should_fail
[PASS] dipcoin::exchange_tests::test_trade_executes_positions_update
[PASS] dipcoin::order_tests::test_verify_and_fill_reduce_only_rules
[PASS] dipcoin::exchange_tests::test_trade_when_protocol_paused_should_fail
[PASS] dipcoin::exchange_tests::test_trade_with_gas_fee_transfer
Test result: OK. Total tests: 275; passed: 275; failed: 0

Code Coverage
The repository includes two separate test suites: a Sui Move unit test suite and a TypeScript-based integration suite. Coverage metrics can only
be generated for the Move tests and therefore do not reflect repository-wide coverage. Several core modules, including isolated_trading
and isolated_liquidation , currently have minimal test coverage. We strongly recommend extending the Move test suite to cover these
critical paths to improve security guarantees and catch bugs in future releases.

Fix Review Update

Test coverage improved substantially, with total Move coverage increasing from 30.91% to 89.11%. Previously untested or minimally covered core
modules such as isolated_trading , isolated_liquidation , perpetual , and order were expanded to ~90–96% coverage. This
significantly strengthens confidence in critical trading, liquidation, and settlement paths and reduces the risk of regressions.

Module Coverage %

error 45.16

protocol 84.97

library 89.08

roles 88.37

sub_accounts 87.26

bank 95.76

coin 0.00

evaluator 79.96

s128 97.97

funding_rate 91.25

position 88.94

settlement 93.27

insurance_fund 100.00

perpetual 88.53

order 89.67

isolated_trading 96.12

isolated_liquidation 95.25

isolated_adl 95.35

exchange 92.92

initialize 100.00

test 0.00

Total Move Coverage 89.11

Changelog
2025-12-01 - Initial report
2025-12-16 - Final report

About Quantstamp
Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and
the Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in
formal verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has
worked with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked
with include Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the
World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:
Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora
Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are
not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for
the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that
Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the
extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the
use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any
output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp
disclaims all warranties, expressed implied, in connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. You agree
that access and/or use of the report and other results of the review, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE
THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation
provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to
unknown risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials
identified in the report and does not extend to the compiler layer, or any other areas beyond the programming language, or programming aspects
that could present security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor guarantee
its security, and may not be represented as such. No third party is entitled to rely on the report in any way, including for the purpose of making
any decisions to buy or sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume responsibility for
any product or service advertised or offered by a third party, or any open source or third-party software, code, libraries, materials, or information
to, called by, referenced by or accessible through the report, its content, or any related services and products, any hyperlinked websites, or any
other websites or mobile applications, and we will not be a party to or in any way be responsible for monitoring any transaction between you and
any third party. As with the purchase or use of a product or service through any medium or in any environment, you should use your best
judgment and exercise caution where appropriate.

© 2025 – Quantstamp, Inc. Dipcoin Perpetual

