
Dipcoin Vault

Executive Summary
This audit report was prepared by Quantstamp, the leader in blockchain security.

Type Vault

Timeline 2025-11-24 through 2025-12-04

Language Move

Methods
Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification None

Source Code
dipcoinlab/dipcoin-perpetual

#293ae64

Auditors
Hamed Mohammadi Auditing Engineer

Rabib Islam Senior Auditing Engineer

Tim Sigl Auditing Engineer

Documentation quality Low

Test quality Medium

Total Findings
22

Fixed: 12 Acknowledged: 8
Mitigated: 2

High severity findings 7 Fixed: 5 Acknowledged: 1
Mitigated: 1

Medium severity findings 5 Fixed: 3 Acknowledged: 2

Low severity findings 8 Fixed: 2 Acknowledged: 5
Mitigated: 1

Undetermined severity
findings

0

Informational findings 2 Fixed: 2

Summary of Findings
The Dipcoin Vault module enables the creation of multiple vaults for capital allocation within the Dipcoin perpetual futures exchange markets.
The module allows Dipcoin administrators to define a global framework and configuration parameters that any user can leverage to create and
fund new vaults after paying the required vault creation fee. Once created, these vaults may be funded by other users, and the deposited capital
can then be allocated across various Dipcoin futures exchanges to generate returns.

The protocol supports several enforceable constraints and configuration options:

Global max_cap — sets the maximum amount of funds any vault can hold.
Global lock_period_ms — prevents immediate withdrawal after deposits.
Global status — allows pausing all operations across all vaults.
Per-vault creator_minimum_share_ratio — ensures vault creators maintain ownership of a minimum share ratio in their own vault.
Per-vault creator_profit_share_ratio — allows creators to charge performance-based fees.
Per-vault enable_direct_withdraw — enables or disables asynchronous withdrawals.
Per-vault deposit_status — allows pausing or resuming new deposits.
Per-vault min_deposit_amount — enforces a minimum allowable deposit.

During the audit, we identified numerous issues, several of which posed a significant impact on protocol operations and security, and were
classified as high severity.

Fix-Review Update 2025-12-13:
During the fix review, several issues were resolved or mitigated, while the remaining ones were acknowledged with supporting explanations. The
set of mitigated and acknowledged findings includes two High severity issues, DIP-5 and DIP-6.

Overall, considerable effort was invested in improving the codebase and addressing the identified issues. The majority of concerns with potential
negative impact on vault operations and safety have been handled. Looking ahead, the codebase could benefit from additional refinements, such
as adopting Virtual Shares and Decimals Offset, as well as gradually strengthening areas where issues were mitigated or acknowledged,
particularly those of High or Medium severity.

https://quantstamp.com/
https://github.com/dipcoinlab/dipcoin-perpetual
https://github.com/dipcoinlab/dipcoin-perpetual/commit/293ae647664378ba9fba7fe2ffdafff5c6dad2bf

ID DESCRIPTION SEVERITY STATUS

DIP-1 Incorrect Share Price Calculation During Withdrawal Requests • High Fixed

DIP-2 Vault Insolvency due to Untracked Creator Shares • High Fixed

DIP-3 Denial of Service in Several Functions Due to Object Limits • High Fixed

DIP-4
Incorrect Profit Sharing Logic in distribute_funds()
Function Leads to Fee Leakage

• High Fixed

DIP-5
NAV Calculation Using Oracle Spot Price Instead of Perpetual
Mark Price • High Acknowledged

DIP-6 Stale Oracle Price Leads to System-Wide DoS • High Mitigated

DIP-7 Vaults Susceptible to Inflation Attacks • High Fixed

DIP-8
Double-Counting of Assets Allows Vault Drainage in Delisted
Markets • Medium Fixed

DIP-9 Denial of Service on Newly Created Vaults by Manager • Medium Fixed

DIP-10
Vault Denial of Service if Creator Exits in Manager-Created
Vaults • Medium Fixed

DIP-11
Unrestricted Lock Period Updates Can Break Depositor and Vault
Creator Assumptions • Medium Acknowledged

DIP-12 Vault Name Reuse Enables Impersonation and Fund Theft • Medium Acknowledged

DIP-13 Changing Trader Can Revoke Operator Access • Low Fixed

DIP-14
VaultNAV Calculation Exceeds Object Limits as Market Count

Grows, Causing Denial of Service for All Vault Operations
• Low Acknowledged

DIP-15
Lack of Slippage Protection on Deposits Exposes Users to Front-
Running • Low Acknowledged

DIP-16 Lack of Slippage Protection on Withdrawals • Low Acknowledged

DIP-17 Orphaned Perpetual Positions due to Incomplete Closure Check • Low Fixed

DIP-18 Consider Sanitizing Vault Names • Low Acknowledged

DIP-19 Input Parameter Validation • Low Mitigated

DIP-20 Lack of Deadline Protection for Withdrawal Requests • Low Acknowledged

DIP-21 Dust Withdrawals Allow Request Spam and Fee Avoidance • Informational Fixed

DIP-22 Redundant VaultNAV Calculation in Withdrawal Requests • Informational Fixed

Assessment Breakdown
Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best
practices.

Disclaimer
Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence
Timestamp dependence
Mishandled exceptions and call stack limits
Unsafe external calls
Integer overflow / underflow
Number rounding errors
Reentrancy and cross-function vulnerabilities
Denial of service / logical oversights
Access control
Centralization of power
Business logic contradicting the specification
Code clones, functionality duplication
Gas usage
Arbitrary token minting

Methodology

1. Code review that includes the following
1. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and

functionality of the smart contract.
2. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
3. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.
2. Testing and automated analysis that includes the following:

1. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is
exercised when we run those test cases.

2. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and

control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope
The scope of this audit is limited to the following file:

contracts/sources/vault.move

Operational Considerations
Potential for Misconfiguration: There are no hardcoded maximum or minimum limits for global configuration values; the exchange admin
and exchange manager must ensure that vaultConfig values are set correctly.
Withdrawal requests: Either the platform operator or the vault creator must gradually fulfill withdrawal requests.
Vault status abuse potential: The exchange manager must not abuse the ability to freeze the entire protocol by resetting the status flag.
Capital allocation: The platform operator and vault trader must not drain the vaults through malicious capital allocation.

Key Actors And Their Capabilities
Exchange Admin (ExchangeAdminCap)
Responsibilities:

Global vault configuration initialization: Module initialization by creating global vault configurations via the VaultConfig object.

Trust Assumptions: Root of trust: If compromised, it can be exploited to create a malicious VaultConfig object, potentially leading to the
initialization of new vaults with improper configurations.
Remarks: Exercises functionality through the create_vault_config() function, accessible from other modules within the protocol.

Exchange Manager (ExchangeManagerCap)
Responsibilities:

Global vault configurations: Reset vault configuration properties including operator , status , max_cap , creation_fee ,
fee_pool , and lock_period_ms .

Vault creation: Create new uncapped vaults without requiring an initial deposit or creation fee.

Trust Assumptions: High trust: Can arbitrarily update various global vault configuration parameters, which can affect all vaults.

Platform Operator (VaultConfig.operator)
Responsibilities:

Capital allocation: Manages the allocation, transfer, and tracking of all vaults' assets across different perpetual markets through
SubAccounts .

Process withdrawal requests: Handles queued withdrawal requests for various vaults.
Vault Removal: Deletes closed vaults to free up storage.

Trust Assumptions: High trust: If compromised, it can be exploited to allocate funds maliciously or process unauthorized withdrawal requests,
potentially draining all the vaults.

Vault Creator (Vault.creator)
Responsibilities:

Vault creation: Any user can create a new vault by submitting an initial deposit and paying the vault creation fee. The creator then
assumes the role of vault creator for the newly created vault.
Process withdrawal requests: Handles queued withdrawal requests for their vault.
Vault configurations: Reset vault properties including trader , deposit_status , enable_direct_withdraw , max_cap , and
min_deposit_amount .

Funds distribution: Distribute funds, such as profits and dividends, proportionally to all vault depositors.
Vault closer: Can close their own vault.

Trust Assumptions: Originally untrusted: anyone can create a vault; after creation, cannot be transferred.

Vault Trader (Vault.trader)
Responsibilities:

Capital allocation: Manages the allocation, transfer, and tracking of a single vault's assets across different perpetual markets through
SubAccounts .

Trust Assumptions: Medium trust: if compromised, it can be abused to misallocate a single vault’s funds.

Vault Depositors (Regular Users)
Responsibilities:

Can deposit and withdraw funds.

Trust Assumptions: None.

Findings
DIP-1
Incorrect Share Price Calculation During Withdrawal Requests

• High Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 230ad6bd8693581099af2dcfb2f054299b59ce4a .

This issue was independently identified by both the audit team and the Dipcoin team as part of their
internal review processes.

File(s) affected: vault.move

Description: The request_withdraw() function immediately decrements vault.total_shares by the requested amount. However, the
assets backing those shares remain in the vault (in the Bank or open positions) until the operator calls fill_withdrawal_requests() . During
this interim period, update_share_price() calculates the price as: price = (Bank Balance + Position Value) / total_shares .
Since total_shares has been reduced but the numerator (Assets) has not, the share price is artificially inflated. This allows the withdrawing
user (or subsequent users) to extract more value than they are entitled to, effectively stealing from remaining shareholders.

Exploit Scenario:

1. Vault has 1000 USDC and 100 Shares. Price = 10 USDC.
2. User A requests withdrawal of 10 Shares (worth 100 USDC).
3. total_shares becomes 90. Assets remain 1000 USDC.
4. Operator calls fill_withdrawal_requests() .
5. update_share_price() is called: 1000 / 90 = 11.11 USDC .
6. User A is paid: 10 shares * 11.11 = 111.11 USDC . 7. User A steals 11.11 USDC from the vault.

Recommendation: Do not decrement total_shares in request_withdraw() . Instead, only decrement it in
fill_withdrawal_requests() when the assets are actually paid out. Alternatively, modify update_share_price() to use
total_shares + requested_pending_shares as the denominator.

DIP-2 Vault Insolvency due to Untracked Creator Shares • High Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 230ad6bd8693581099af2dcfb2f054299b59ce4a .

This issue was independently identified by both the audit team and the Dipcoin team as part of their
internal review processes.

File(s) affected: vault.move

Description: When a withdrawal request is filled via fill_withdrawal_requests() , the protocol calculates a profit share fee
(share_to_creator) and adds these shares to the creator's Position . However, the protocol fails to increment vault.total_shares to
reflect this new issuance.

This creates a permanent accounting mismatch where the sum of all user shares exceeds the total_shares tracked by the vault. Sum(User
Shares) > Vault Total Shares

Because total_shares (the denominator) is smaller than the actual number of outstanding shares, the share price is permanently artificially
inflated. This guarantees that the vault will eventually become insolvent, as the last users to withdraw will find there are insufficient assets to
cover their shares at the inflated price.

Exploit Scenario:
1. Vault has 100 USDC and 100 Shares. Price = 1.0.
2. User withdraws. Fee calculation awards 1 Share to the Creator.
3. Creator's balance increases by 1.
4. vault.total_shares is NOT increased.
5. Total Claims = 101 Shares. Total Tracked Shares = 100.
6. Price = 100 USDC / 100 Shares = 1.0.
7. If everyone tries to withdraw: 101 Shares * 1.0 = 101 USDC needed.
8. Vault only has 100 USDC. It is insolvent.

Recommendation: In fill_withdrawal_requests() , immediately after adding shares to the creator's position, increment
vault.total_shares by share_to_creator .

DIP-3 Denial of Service in Several Functions Due to Object Limits • High Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 88027bf820e6052fa9ce956b543e6dd12bae7ebb , 8036b79578ba123c2bf809cb68ce187d27685ab2 .

The distribute_funds() function was identified for removal during the audit. The Dipcoin team
confirmed that it had already been planned for removal prior to the initial report.

File(s) affected: vault.move

Description: There are several functions within the vault that perform various batch operations with potentially unbounded batch sizes.

1. The distribute_funds() function (and by extension close_vault() , which calls it) iterates over the entire vault.users list to
distribute dividends. Inside the loop, it performs two dynamic field accesses per user:

vault.user_positions.borrow(*user) : Accesses the user's position in the Vault table.
bank.transfer(...) : Accesses the user's account in the Bank table.

2. The set_vault_config_operator() function iterates over all existing vaults to reset the operator address in their SubAccounts ,
which results in dynamic field accesses under the hood.

Any of these operations can be exploited by attackers or become problematic through natural protocol growth as new vaults are created and new
users join.

Aside from the gas cost of these operations possibly exceeding gas limit constraints, Sui enforces a strict limit of 1,000 dynamic field accesses
per transaction (see Move Book). This means that any of these functions can easily reach this 1,000 dynamic field access limit and trigger denial-
of-service (DoS) issues.

Recommendation:
1. Remove distribute_funds() : As noted, users can simply withdraw to realize gains. Push-based token distribution is an anti-pattern.
2. Refactor close_vault() : Instead of pushing funds to all users, close_vault() should simply set the vault state to Closed . Users

would then claim their share of the remaining assets via a new claim_closed_vault_funds() function (pull pattern).
3. Refactor the permission update logic in set_vault_config_operator() function to be asynchronous or paginated. Instead of updating

all vaults in a single transaction, allow the operator to be updated in batches or implement a lazy update mechanism where permissions are
checked and updated only when a vault is next interacted with.

DIP-4
Incorrect Profit Sharing Logic in distribute_funds() Function Leads to
Fee Leakage

• High Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 8036b79578ba123c2bf809cb68ce187d27685ab2 .

The distribute_funds() function was identified for removal during the audit. The Dipcoin team
confirmed that it had already been planned for removal prior to the initial report.

File(s) affected: vault.move

Description: The distribute_funds() function calculates the creator's profit share by treating the distributed amount as a pro-rata slice of
the user's position (containing both principal and profit in proportion to the current share price). However, unlike a withdrawal, the distribution
does not reduce the user's share count or adjust their cost basis (average_price). This leads to a mathematical flaw where the "principal
portion" of the distribution is returned tax-free, but the user's cost basis remains high. This effectively erases the "unrealized profit" from the
share price without taxing it.

Exploit Scenario:
1. User deposits $100 (100 shares at $1).
2. Vault makes $100 profit. Price = $2.
3. Creator distributes $100 (the profit).
4. Code calculates: Distribution is 50% of value ($200). So it represents 50 shares.
5. Profit on 50 shares = $50. Fee = 10% * $50 = $5.
6. User receives $95.
7. Vault Share Price drops to $1 (Assets $100 / 100 Shares).
8. User's remaining unrealized profit is $0 ($1 Price - $1 Entry).
9. Total Fee Paid = $5. Correct Fee on $100 profit should be $10.

10. Creator loses 50% of their fees.

Recommendation: Since the Dipcoin team stated that distribute_funds() will be removed, no remediation is required.

DIP-5
NAV Calculation Using Oracle Spot Price Instead of Perpetual
Mark Price

• High Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

We choose the oracle price based on the following considerations:
1. Mark price is more susceptible to manipulation than oracle price, especially when liquidity is

insufficient in the early stages.
2. The oracle price is more transparent than the mark price.
3. The oracle price is more representative of the fair price. Any deviation of the market price from

the oracle price is only temporary and will regress to the oracle price. When withdrawing funds
while the market price is lower than the oracle price, the share_price refers to the price obtained
after position closure (which already accounts for the price deviation) and will not cause losses to
the remaining depositors.

File(s) affected: vault.move

https://move-book.com/guides/building-against-limits/#maximum-number-of-dynamic-fields-accessed

Description: The vault's Net Asset Value (NAV) is calculated by valuing its perpetual contract positions using a price feed from the Pyth oracle.
However, Pyth oracles provide the spot price of an underlying asset (e.g., the current market price of BTC), not the mark price of a specific
perpetual contract trading on an exchange. In derivatives markets, the perpetual price can significantly deviate from the spot price – a difference
known as the basis. By using the spot price for valuation, the contract incorrectly calculates the unrealized PnL of its positions, leading to a
flawed NAV and an exploitable share price.

Exploit Scenario:
1. An attacker waits for a period of significant market backwardation, where the price of a perpetual contract (BTC-PERP) is trading at a

substantial discount to the spot price of the underlying asset (BTC). For example, BTC-PERP might be at $48,000 while the Pyth oracle
reports a spot price of $50,000.

2. The vault holds a large, long BTC-PERP position. The true market value of this position is based on the $48,000 price.
3. The attacker, who is an existing depositor, triggers a withdrawal. The compute_perpetual_position_value function is called and uses

the higher spot price of $50,000 from the Pyth oracle to calculate the position's value.
4. This miscalculation artificially inflates the vault's NAV, resulting in an overstated share price. The attacker's shares are now worth more than

they should be, and when they withdraw, they receive an excess amount of the underlying assets, effectively stealing the difference in value
from the remaining depositors in the vault.

Recommendation: The NAV calculation in compute_perpetual_position_value() must be refactored to use the perpetual contract's own
internal mark price for valuing positions, not the external spot price from the oracle. The spot oracle should only be used as a reference for
liquidations and for calculating the funding rate, which are its correct functions in a perpetuals system.

DIP-6 Stale Oracle Price Leads to System-Wide DoS • High Mitigated

Update
Marked as "Mitigated" by the client.
Addressed in: 9751237437bb737c7ccc3057ce4edc0e0e5efa21 .
The client provided the following explanation:

Currently, our system is highly dependent on oracle prices. If the oracle of a certain market is stale,
the entire market will be unable to conduct transactions, and calculating position values based on this
state will be meaningless. In such a case, the best approach is to suspend the corresponding
operations(deposit, withdraw, etc.). Meanwhile, we have also made a modification to skip price updates
for markets with no open positions, thereby avoiding being affected by irrelevant stale markets.

File(s) affected: vault.move

Description: The vault requires that NAV be calculated using fresh prices for every single perpetual market in the system before any financial
operation can proceed. If the oracle for even one, potentially minor, market becomes stale (older than 60 seconds), the
pyth::get_price_older_than call reverts, causing the entire transaction to fail. This effectively freezes all deposits, withdrawals, and

financial management for every user of the vault, regardless of whether their funds are involved with the affected market.

Recommendation: The protocol manager should have the ability to temporarily mark a specific perpetual market as "paused" or "suspended" if
the oracle is unresponsive. The NAV calculation should then be modified to gracefully handle this state, for instance, by calculating the NAV
based only on the remaining active markets and temporarily disallowing interactions that would be affected by the paused market. As mentioned
in DIP-5, a better solution would be not to use oracle prices for NAV calculations altogether.

DIP-7 Vaults Susceptible to Inflation Attacks • High Fixed

Update
Marked as "Fixed" by the client.
Addressed in: ab4b8c92315ae3ab4c2ac35efd7c968d756f2c53 , 54cfac7a02988ba86734d12207a321b748cd5128 , and
2db007f5585f8b73a46e000a630b17c097f76e8d .

The client provided the following explanation:

We have a protocol-level MIN_DEPOSIT_AMOUNT limit, which is currently set at 10 USDC, and this can
prevent the issue.

File(s) affected: Vault.move

Description: The vault share price is calculated by dividing the sum of all vault assets across different perpetuals, along with the vault balance in
the Bank module, by vault.total_shares . Since funds can be donated to the vault via various Bank functions, a malicious actor could
artificially inflate the vault’s assets, increasing their share value and potentially draining the vault.

Exploit Scenario:

1. Creator creates a vault with 1 MIST deposit (shares=1).
2. Creator frontruns victim's transfer to transfer 10,000 USDC to the vault's bank account.
3. Share price becomes ~10,000 USDC per share unit.
4. Victim deposits 15,000 USDC.
5. Victim receives 15,000 / 10,000 = 1 share unit.
6. Victim's position value is 10,000 USDC.
7. Victim loses 5,000 USDC (33% loss).
8. Creator withdraws their 1 share. Since they are the creator, they pay no profit sharing fees and capture the full value of the donation + the

victim's loss.

Recommendation: Implement a robust defense by combining two strategies as described in OpenZeppelin ERC-4626:

1. Virtual Shares (Offsetting the Denominator): Add a virtual offset to the share supply calculation to dampen the effect of early donations.
2. Decimal Offset (Increasing Precision): Increase the internal precision of shares (e.g., to 1e18 or higher) relative to the asset's decimals.

This reduces the impact of rounding errors. If shares have 9 extra decimals of precision, a 1 MIST donation only inflates the price by a tiny
fraction, making the attack prohibitively expensive. Implementing both provides the strongest defense against rounding losses and inflation
attacks.

DIP-8
Double-Counting of Assets Allows Vault Drainage in Delisted
Markets

• Medium Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 255e35036bd3437543cff9316573b8a4f5416d48 , and 6530e67a6481c59ce0cecdece079e11f5e9c7370 .

File(s) affected: vault.move

Description: The VaultNAV struct acts as a temporary snapshot of unrealized position values, while withdraw() adds this snapshot to the
live Bank balance. This creates a race condition within a Programmable Transaction Block (PTB) where a trader can snapshot unrealized profits,
close the position to realize them into the Bank, and then withdraw. This results in the same value being counted twice—once as position value
and once as cash—artificially inflating the share price. This attack is only feasible in delisted markets, as exchange::close_position() is
restricted to delisted perpetuals. For live markets, trading is permissioned (requires SettlementCap), preventing the vault creator from
atomically closing positions in the same PTB unless they also control the settlement operator.

Exploit Scenario:
1. A perpetual market is delisted.
2. The Vault creator calls new_vault_nav() and compute_perpetual_position_value() to record the position's value in VaultNAV .
3. In the same PTB, the creator calls exchange::close_position() , which is allowed for delisted markets. This moves the position's value

to the Vault's Bank.
4. Attacker calls vault::withdraw() . The contract calculates NAV = VaultNAV (Position Value) + Bank (Realized Value) .
5. The assets are counted twice, allowing the attacker to withdraw more than their fair share, potentially draining the vault.

Recommendation: Snapshot the Bank balance at the same time VaultNAV is created and store it within the struct. Use this snapshotted
balance for share price calculations instead of bank.get_balance() .

DIP-9 Denial of Service on Newly Created Vaults by Manager • Medium Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 230ad6bd8693581099af2dcfb2f054299b59ce4a .

This issue was independently identified by both the audit team and the Dipcoin team as part of their
internal review processes.

File(s) affected: vault.move

Description: The create_vault_by_manager() function allows creating a new vault without an initial deposit, resulting in a vault with 0
shares and 0 assets. Other vault operations, such as deposit() , call update_share_price() , which performs a division by
vault.total_shares . For vaults with 0 shares, this leads to a division-by-zero error, rendering the vault unusable.

Recommendation: Consider mitigating this by either:
1. Initializing new vaults with a small number of virtual shares.
2. Modifying the update_share_price() function, by adding a check to handle the case where total_shares is zero. If it is zero (indicating an

initial deposit), the share price should be fixed at a default value (e.g., 1.0, which is library::base_uint()) instead of being calculated

https://docs.openzeppelin.com/contracts/5.x/erc4626

via division.

DIP-10
Vault Denial of Service if Creator Exits in Manager-Created Vaults

• Medium Fixed

Update
Marked as "Fixed" by the client.
Addressed in: f615d39764979bcb1ed5e2facc3556702c0f8a11 .

File(s) affected: vault.move

Description: In manager-created vaults, the creator_minimum_share_ratio can be set to 0, allowing the creator to withdraw 100% of their
shares. When a user's share balance reaches 0, their Position object is removed from the user_positions table.

However, the withdraw_preload() function and fill_withdrawal_requests() function both contain logic that unconditionally attempts
to borrow the creator's position to distribute profit sharing fees:

if (user != vault.creator) {
 vault.user_positions.borrow_mut(vault.creator).add_shares(share_to_creator, share_price);
};

If the creator has exited the vault (removed their position), this borrow_mut call will fail, causing the transaction to abort.

Recommendation: Check if the creator's position exists before attempting to add shares. If the position is missing, handle the fee distribution
gracefully (e.g., re-create the position or skip fee distribution).

DIP-11
Unrestricted Lock Period Updates Can Break Depositor and
Vault Creator Assumptions

• Medium Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

For all parameter changes to VaultConfig, we will have a notification period, and will not modify
system parameters arbitrarily or abruptly.

File(s) affected: vault.move

Description: The set_vault_config_lock_period() function allows the exchange manager to modify vault_config.lock_period_ms
at any time without restriction. Since this lock period applies directly to user withdrawals, sudden updates can break depositors’ assumptions and
result in unexpected lockups. Furthermore, because the lock period is defined globally rather than per vault, changing it can also disrupt
assumptions made by vault creators, potentially affecting their strategy design or user expectations.

Recommendation: To mitigate these risks, consider the following improvements:
1. Introduce a grace period before applying the new lock_period_ms , allowing depositors who wish to exit to withdraw before the change

takes effect.
2. Apply the updated lock_period_ms only to new deposits. This can be achieved by extending the Position struct with a Table that

records each deposit amount alongside the lock period that was active at the time of deposit.
3. Clearly document the risks for both depositors and vault creators, explicitly stating that the manager can update lock_period_ms at any

time and to any value.

DIP-12
Vault Name Reuse Enables Impersonation and Fund Theft

• Medium Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

For on-chain users, they are capable of and should understand that vault_id is the unique identifier.
For DAPP users, in addition to displaying vault_id, we will also present key information such as vault
creation time, TVL, and performance, and can also issue warnings about vault name reuse. Furthermore,

in our design, remove_vault is not executed immediately after a vault is closed; this is only a
reserved capability.

File(s) affected: vault.move

Description: The protocol does not prevent the reuse of a vault's name after the original vault has been closed and removed. When
remove_vault() is called, it completely deletes the vault's name from the name_to_id registry. This allows a malicious actor to immediately

create a new vault using the exact same name as a previously reputable and successful vault. Unsuspecting users, relying on off-chain
information, social media, or outdated frontend data, may then deposit funds into the new, malicious vault, believing they are investing in the
original. The attacker can then steal these deposited funds.

Recommendation: Modify the VaultRegistry to maintain a permanent record of all vault names that have ever been used. Instead of deleting
the name from the name_to_id table, the remove_vault function should move the name to a new deprecated_names table or VecSet . The
create_vault() and create_vault_by_manager() functions must then be updated to check against this list of deprecated names,

ensuring that a vault name, once used, can never be registered again. This guarantees the uniqueness and integrity of a vault's identity
throughout the protocol's entire history.

DIP-13 Changing Trader Can Revoke Operator Access • Low Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 73a9c4c08bb0cfb9accdf2931157ca4aea0380b5 .

File(s) affected: vault.move

Description: The set_trader() function revokes the old_trader 's sub-account access without checking if that address is also the
designated vault_config.operator . In the SubAccounts module, authorization is binary (is authorized or not) and does not track roles. If
the old_trader address happens to be the same as the operator address, set_trader() will remove the operator from the allowlist.
This locks the operator out of the vault, preventing them from performing tasks like fill_withdrawal_requests() .

Recommendation: In set_trader() , add a check to ensure old_trader is not the vault_config.operator before revoking access.
Note: Simply preventing trader == operator is insufficient because the collision could also be created by
set_vault_config_operator() . The check-before-revoke method handles collisions from both sources.

DIP-14
VaultNAV Calculation Exceeds Object Limits as Market Count
Grows, Causing Denial of Service for All Vault Operations

• Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

For a considerable period of time, the number of contract markets we plan to launch will not exceed 50,
the current solution is sufficient for use. In addition, the solution you recommended has potential
security risks of being attacked, as traders' opening/closing positions operations are not synchronized
with the register_market process.

File(s) affected: vault.move

Description: The VaultNAV logic iterates through every perpetual market registered in the ProtocolConfig to calculate the Vault's total Net
Asset Value (NAV). This occurs in new_vault_nav() and compute_perpetual_position_value() .

Sui enforces a strict limit of 1,000 unique dynamic field accesses per transaction block (PTB).

For each perp market, compute_perpetual_position_value() performs the following operations:

1. nav.position_values.contains(perp_id) & nav.position_values.add(perp_id, ...) : Accesses the unique field for this
perp in the NAV table.

2. perp.has_position(vault_address) & perp.borrow_position(vault_address) : Accesses the unique field for this vault in the
Perpetual's position table.

Once the protocol deploys approximately 500 markets, the transaction will hit the 1,000 unique dynamic field limit. Since deposit() ,
withdraw() , distribute_funds() , and close_vault() all require VaultNAV , all user funds will be locked in every Vault.

Recommendation: Refactor the Vault to track its own "Active Markets" instead of iterating the global list.
1. Add Registry: Add a VecSet<ID> field to the Vault struct to store enabled_markets .

2. Update NAV: Modify VaultNAV to iterate only over vault.enabled_markets .
3. Permissionless Registration: Add a function register_market(vault, perp) that adds a market to the Vault's list.
4. Anti-Exploit Mechanism: To prevent a malicious trader from hiding losing positions (by not registering the market), implement a

permissionless force_register() function. This allows any user (or a keeper bot) to prove the Vault has a position in an unregistered
market, forcing it into the list and ensuring the NAV remains accurate.

DIP-15
Lack of Slippage Protection on Deposits Exposes Users to
Front-Running

• Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

Although an attacker engages in front-running a large deposit, the share price will not change, and
subsequent depositors will not receive fewer shares. Since we use the oracle spot price to calculate
the NAV, which is extremely difficult for attackers to manipulate. This finding is almost impossible to
occur.

File(s) affected: vault.move

Description: The deposit() function calculates the number of shares a user receives based on the vault's NAV at the start of the transaction.
An attacker can exploit this by front-running a large deposit and executing a trade that artificially inflates the vault's NAV. When the victim's
deposit is then processed, it will be valued against this higher NAV, causing them to receive significantly fewer shares than they expected for
their assets.

Recommendation: Modify the deposit() function to accept a min_shares_out parameter. This allows the depositor to specify the
minimum number of shares they are willing to accept for their deposit amount, causing the transaction to revert if MEV or other price movements
result in an outcome below this threshold.

DIP-16 Lack of Slippage Protection on Withdrawals • Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

Since we use the oracle spot price to calculate the NAV, which is extremely difficult for attackers to
manipulate. This finding is almost impossible to occur.

File(s) affected: vault.move

Description: When withdrawing funds, a user specifies the number of shares to burn but has no control over the minimum amount of underlying
assets they receive, which is based on the last_share_price calculated at the start of the transaction. This exposes users to front-running
attacks, where an attacker can execute a trade that negatively impacts the vault's NAV just before the withdrawal, causing the victim to receive
fewer assets than expected.

Recommendation: Modify the withdraw() and request_withdraw() functions to accept an additional parameter, min_amount_out .
This would allow users to specify the minimum amount of assets they are willing to accept for their shares, causing the transaction to revert if the
final value falls below this threshold due to slippage or manipulation.

DIP-17
Orphaned Perpetual Positions due to Incomplete Closure Check

• Low Fixed

Update
The issue was addressed in: c5ae76b85744cf25ed6d3cb4e728981dccd3157d .

File(s) affected: vault.move

Description: The close_vault() function intends to ensure a vault has no open positions before allowing closure, asserting
nav.position_nav == 0 . However, nav.position_nav is calculated in compute_perpetual_position_value() using
.positive_value() , which clamps negative position values (underwater positions) to zero. This means a vault with open, underwater

positions (where PnL loss > margin) can be closed and subsequently removed. While this scenario is extremely unlikely—as such positions would

typically be liquidated long before a vault closure is attempted—it remains theoretically possible. When remove_vault() deletes the Vault
object, the corresponding Position in the Perpetual contract remains in storage but becomes permanently inaccessible. If the market
price recovers, the locked margin and potential profits in that position are lost forever as the owner (the vault) no longer exists.

Recommendation: In close_vault() , instead of relying on nav.position_nav , the function should explicitly verify that the vault has no
active positions in any market. This requires iterating through all perpetual markets and checking !perp.has_position(vault_address) .

Alternatively, update the documentation and function comments to clarify that close_vault() is permitted when the vault's Net Asset Value
(NAV) is zero, even if open positions exist (provided they have zero value).

DIP-18 Consider Sanitizing Vault Names • Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

For on-chain users, they are capable of and should understand that vault_id is the unique identifier.
For DAPP users, in addition to displaying vault_id, we will also present key information such as vault
creation time, TVL, and performance, and can also issue warnings about similar vault names.

File(s) affected: vault.move

Description: The create_vault() function allows vault creators to provide a name for their vaults in string format. However, this string is not
sanitized or validated. This can lead to situations where multiple vaults exist with visually similar names that differ only in capitalization or
whitespace, such as TestVault , TestVault , or test vault .

Recommendation: Consider sanitizing vault names by:
1. Ensuring the names are alphanumeric and only allow a defined set of special characters.
2. Trimming whitespace from the beginning and end of the string.
3. Converting all characters to either uppercase or lowercase, if appropriate.

DIP-19 Input Parameter Validation • Low Mitigated

Update
Marked as "Mitigated" by the client.
Addressed in: 0e9a5dec3689ebfb9d60ab77d451b270c533e577 .
The client provided the following explanation:

We do not fix no. 5, 6, because it does not affect the usage of existing users and the error is easy to
detect. Adding hard-coded restrictions would make the configuration less flexible.
 We do not fix no. 9, we do not limit that max_cap must be greater than the current vault value. It is
acceptable for max_cap to be lower than the vault value, in which case users can only withdraw funds
and cannot make deposits.

File(s) affected: vault.move

Description: It is important to validate user-provided inputs, even in administrative functions and for values coming from trusted sources, to
prevent human errors and unintended behavior.

1. In the create_vault() function, ensure the initial deposit amount does not exceed the max_cap set for the vault.
2. In the create_vault() function, ensure the initial deposit amount is not below min_deposit_amount set for the vault.
3. In the deposit_internal() function, ensure the deposit amount is greater than vault.deposit_internal instead of 0 .
4. In set_vault_config_max_cap() , set_vault_config_vault_creating_fee() , set_vault_config_fee_pool() , and

set_vault_config_lock_period() , ensure the new values are not equal to the existing ones.
5. Consider adding an immutable minimum value for VaultConfig.max_cap to prevent very small caps.
6. Consider adding an immutable maximum value for VaultConfig.vault_creating_fee .
7. Consider adding an immutable maximum value for VaultConfig.lock_period_ms .
8. In the set_max_cap() function, ensure the provided max_cap value is properly validated against the existing VaultConfig.max_cap

to prevent redundant or invalid updates.
9. The set_max_cap() function allows setting a new max_cap for a given vault. However, there is no mechanism in this function to ensure

that the provided max_cap is not below the sum of existing funds in the vault. Make sure to validate this new max_cap value.

Recommendation: Applying above input validations can help prevent misconfigurations, human errors, and potential inconsistencies in vault
behavior.

DIP-20 Lack of Deadline Protection for Withdrawal Requests • Low Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

The system operator is an automated processing program. Once detecting a request_withdraw event, it
will immediately process the positions and then execute fill_withdrawal_requests. The system operator
has no interests or incentives to block or delay the processing of users' withdrawal requests. In the
current system, users need to trust the system operator, and we will add corresponding explanations in
the operation interface and documentation.

File(s) affected: vault.move

Description: The request_withdraw() function allows users to queue a withdrawal, but it does not allow them to specify a deadline, which
causes the request to remain valid indefinitely.

This creates a “hostage” situation where a user requests to withdraw at a certain price, but the operator (or creator) can delay execution until the
share price drops. The user has no way to cancel the request or enforce a minimum acceptable price.

Recommendation: Add a deadline parameter to request_withdraw() . In fill_withdrawal_requests() , check if conditions are met
and refund the user if not.

DIP-21
Dust Withdrawals Allow Request Spam and Fee Avoidance

• Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: e23756921e94992791c5ba3dc5badc8ed11b1024 .

File(s) affected: vault.move

Description: The request_withdraw() and withdraw() functions only enforce shares > 0 . Since shares have 9 decimals of precision
(1e9), a user can operate with extremely small "dust" amounts (e.g., 1 MIST or 1e-9 shares). This lack of a minimum threshold leads to two distinct
issues:

1. Request Spam: A malicious user with a small position (e.g., 1 USDC) can generate dust UserWithdrawalRequest shared objects. This
floods the network state and creates clutter for off-chain indexers and the operator's UI.

2. Fee Avoidance: Users can avoid paying the creator's profit share fee by withdrawing small "dust" amounts. The fee calculation involves
multiple integer divisions that round down. If the calculated fee is smaller than 1 share unit, it rounds to 0, allowing the user to keep 100% of
the profit.

Exploit Scenario (Fee Avoidance):

Creator Share: 10% (100,000,000)
Entry Price: 1 USDC (1,000,000,000)
Current Price: 2 USDC (2,000,000,000) (100% Profit)
Withdrawal: 19 shares (19 MIST)

Calculation:

1. PnL: (2e9 - 1e9) * 19 / 1e9 = 19 units.
2. Fee Amount: 19 * 10% = 1.9 -> rounds to 1 unit.
3. Fee Shares: 1 * 1e9 / 2e9 = 0.5 -> rounds to 0 shares.

Result: User withdraws 19 shares worth 38 units of USDC and pays 0 fees.

Recommendation: Enforce a minimum withdrawal size in request_withdraw() and withdraw() . This prevents both the creation of spam
objects and the avoidance of fees via dust rounding.

DIP-22 Redundant VaultNAV Calculation in Withdrawal Requests • Informational Fixed

Update
Marked as "Fixed" by the client.
Addressed in: 1050ac699364a3b79a85a9f84ba860e632dc11ae .

File(s) affected: vault.move

Description: The request_withdraw() function currently calls update_share_price() even though vault.last_share_price is not
required for its operation. Updating the vault share price involves constructing a VaultNAV and performing expensive calculations, which

unnecessarily increases gas costs for users.

Recommendation: Consider removing both the nav parameter from request_withdraw() and the call to update_share_price() within
its implementation to reduce computational overhead.

Auditor Suggestions
S1 Avoid Using Same Error for Two Different Revert Conditions Acknowledged

Update
Marked as "Unresolved" by the client.
The client provided the following explanation:

This issue has no impact on users, and its impact on developers' troubleshooting is also minimal.

The provided explanation above actually acknowledges the issue.

File(s) affected: vault.move

Description: Defining distinct error types for each kind of error within a function can aid in troubleshooting by helping narrow down the trigger of
the error. However, there are a number of locations in the code that reuse the same error type within a function. Below are instances where this
occurs:

create_vault_config()
address_cannot_be_zero()

operator != @0x0
fee_pool != @0x0

create_vault_by_manager()
address_cannot_be_zero()

trader != @0x0
creator != @0x0

create_vault_internal()
invalid_ratio()

creator_minimum_share_ratio < base_uint
creator_profit_share_ratio < base_uint

deposit_internal()
can_not_be_zero()

amount > 0
shares > 0

withdraw_preload()
can_not_be_zero()

shares > 0
amount > 0

Recommendation: Correct the above instances.

S2 creator_loss_share_ratio Is Unused Acknowledged

Update
Marked as "Acknowledged" by the client.
The client provided the following explanation:

This is a reserved field for future upgrading. We have documented that.

File(s) affected: vault.move

Description: The Vault struct includes a field named creator_loss_share_ratio , which implies that the vault's creator will share in a portion
of the depositors' losses. However, this field is never used in any of the protocol's logic.

Recommendation: Either fully implement the loss-sharing logic that this field implies or remove it entirely from the Vault struct and all related
documentation. If implemented, the withdrawal and NAV calculation functions would need to be modified to deduct a portion of any losses from
the creator's share balance and distribute it back to the other depositors.

S3 Finalize the TODO Fixed

Update
Marked as "Fixed" by the client.
Addressed in: a3a9ab0e0fa470895f912c943c1a966dfe829e42 .

File(s) affected: vault.move

Description: There is a TODO in fill_withdrawal_requests() to calculate and deduct gas fees for processing user withdrawals, which is
currently not implemented.

Recommendation: Consider implementing this feature to correctly charge users for gas costs and remove the TODO from the code.

Definitions
High severity – High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

Medium severity – Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

Low severity – The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low
impact in view of the client's business circumstances.

Informational – The issue does not pose an immediate risk, but is relevant to security best practices or Defence in Depth.

Undetermined – The impact of the issue is uncertain.

Fixed – Adjusted program implementation, requirements or constraints to eliminate the risk.

Mitigated – Implemented actions to minimize the impact or likelihood of the risk.

Acknowledged – The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1) comments, documentation, README, FAQ; 2) business processes; 3) analyses
showing that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

Test Suite Results
The tests were executed using the command sui move test -p contracts vault --skip-fetch-latest-git-deps on Sui CLI version
1.61.2-homebrew . The vault module contains 96 test cases, all of which passed successfully.

Fix Review Update During the fix review, the number of tests increased from 96 to 103. However, despite the added tests, the coverage for the
vault module slightly decreased from 91.87% to 87.42%, and the overall test quality remains unchanged.

sui move test -p contracts vault --skip-fetch-latest-git-deps
INCLUDING DEPENDENCY Pyth
INCLUDING DEPENDENCY Wormhole
INCLUDING DEPENDENCY Sui
INCLUDING DEPENDENCY MoveStdlib
BUILDING dipcoin
Running Move unit tests
[PASS] dipcoin::vault_tests::test_close_vault_already_closed
[PASS] dipcoin::vault_tests::test_close_vault_has_pending_withdrawals
[PASS] dipcoin::vault_tests::test_close_vault_has_position
[PASS] dipcoin::vault_tests::test_close_vault_protocol_paused
[PASS] dipcoin::vault_tests::test_close_vault_success
[PASS] dipcoin::vault_tests::test_close_vault_unauthorized
[PASS] dipcoin::vault_tests::test_create_vault
[PASS] dipcoin::vault_tests::test_create_vault_by_manager
[PASS] dipcoin::vault_tests::test_create_vault_by_manager_duplicate_name
[PASS] dipcoin::vault_tests::test_create_vault_by_manager_invalid_profit_share_ratio
[PASS] dipcoin::vault_tests::test_create_vault_by_manager_protocol_paused
[PASS] dipcoin::vault_tests::test_create_vault_by_manager_zero_creator
[PASS] dipcoin::vault_tests::test_create_vault_by_manager_zero_trader
[PASS] dipcoin::vault_tests::test_create_vault_config
[PASS] dipcoin::vault_tests::test_create_vault_duplicate_name
[PASS] dipcoin::vault_tests::test_create_vault_exceeds_max_cap
[PASS] dipcoin::vault_tests::test_create_vault_initial_amount_exceeds_max_cap_should_fail

[PASS] dipcoin::vault_tests::test_create_vault_invalid_creator_minimum_share_ratio
[PASS] dipcoin::vault_tests::test_create_vault_invalid_creator_profit_share_ratio
[PASS] dipcoin::vault_tests::test_create_vault_less_than_minimum_deposit_amount
[PASS] dipcoin::vault_tests::test_create_vault_protocol_paused
[PASS] dipcoin::vault_tests::test_create_vault_zero_shares
[PASS] dipcoin::vault_tests::test_creator_minimum_share_ratio_boundary
[PASS] dipcoin::vault_tests::test_deposit_again
[PASS] dipcoin::vault_tests::test_deposit_amount_too_small
[PASS] dipcoin::vault_tests::test_deposit_bank_id_mismatch
[PASS] dipcoin::vault_tests::test_deposit_by_creator_when_paused
[PASS] dipcoin::vault_tests::test_deposit_creator_share_ratio_below_minimum
[PASS] dipcoin::vault_tests::test_deposit_exceeds_max_cap
[PASS] dipcoin::vault_tests::test_deposit_nav_not_filled
[PASS] dipcoin::vault_tests::test_deposit_protocol_paused
[PASS] dipcoin::vault_tests::test_deposit_success
[PASS] dipcoin::vault_tests::test_deposit_vault_id_mismatch
[PASS] dipcoin::vault_tests::test_deposit_when_paused
[PASS] dipcoin::vault_tests::test_fill_withdrawal_requests_all_not_fill
[PASS] dipcoin::vault_tests::test_fill_withdrawal_requests_by_operator_success
[PASS] dipcoin::vault_tests::test_fill_withdrawal_requests_partial_success
[PASS] dipcoin::vault_tests::test_fill_withdrawal_requests_protocol_paused
[PASS] dipcoin::vault_tests::test_fill_withdrawal_requests_unauthorized
[PASS] dipcoin::vault_tests::test_min_deposit_amount_boundary
[PASS] dipcoin::vault_tests::test_pnl_per_share_negative
[PASS] dipcoin::vault_tests::test_pnl_per_share_positive
[PASS] dipcoin::vault_tests::test_pnl_per_share_zero
[PASS] dipcoin::vault_tests::test_profit_share_ratio_boundaries
[PASS] dipcoin::vault_tests::test_remove_vault_account_exists
[PASS] dipcoin::vault_tests::test_remove_vault_bank_id_mismatch
[PASS] dipcoin::vault_tests::test_remove_vault_not_closed
[PASS] dipcoin::vault_tests::test_remove_vault_success
[PASS] dipcoin::vault_tests::test_remove_vault_unauthorized
[PASS] dipcoin::vault_tests::test_request_withdraw_all_shares
[PASS] dipcoin::vault_tests::test_request_withdraw_by_creator_failed
[PASS] dipcoin::vault_tests::test_request_withdraw_insufficient_shares
[PASS] dipcoin::vault_tests::test_request_withdraw_locked
[PASS] dipcoin::vault_tests::test_request_withdraw_protocol_paused
[PASS] dipcoin::vault_tests::test_request_withdraw_success
[PASS] dipcoin::vault_tests::test_request_withdraw_user_not_exist
[PASS] dipcoin::vault_tests::test_request_withdraw_zero_shares
[PASS] dipcoin::vault_tests::test_set_deposit_status
[PASS] dipcoin::vault_tests::test_set_deposit_status_unauthorized
[PASS] dipcoin::vault_tests::test_set_direct_withdraw_status
[PASS] dipcoin::vault_tests::test_set_direct_withdraw_status_unauthorized
[PASS] dipcoin::vault_tests::test_set_max_cap
[PASS] dipcoin::vault_tests::test_set_max_cap_below_current_value
[PASS] dipcoin::vault_tests::test_set_max_cap_exceeds_global_max_cap
[PASS] dipcoin::vault_tests::test_set_max_cap_invalid_status
[PASS] dipcoin::vault_tests::test_set_max_cap_unauthorized
[PASS] dipcoin::vault_tests::test_set_min_deposit_amount
[PASS] dipcoin::vault_tests::test_set_min_deposit_amount_invalid_status
[PASS] dipcoin::vault_tests::test_set_min_deposit_amount_unauthorized
[PASS] dipcoin::vault_tests::test_set_trader_protocol_paused
[PASS] dipcoin::vault_tests::test_set_trader_success
[PASS] dipcoin::vault_tests::test_set_trader_unauthorized
[PASS] dipcoin::vault_tests::test_set_trader_zero_address
[PASS] dipcoin::vault_tests::test_set_vault_config_fee_pool
[PASS] dipcoin::vault_tests::test_set_vault_config_fee_pool_failed_duplicate
[PASS] dipcoin::vault_tests::test_set_vault_config_fee_pool_zero_address
[PASS] dipcoin::vault_tests::test_set_vault_config_lock_period
[PASS] dipcoin::vault_tests::test_set_vault_config_lock_period_failed_duplicate
[PASS] dipcoin::vault_tests::test_set_vault_config_lock_period_failed_too_long
[PASS] dipcoin::vault_tests::test_set_vault_config_max_cap
[PASS] dipcoin::vault_tests::test_set_vault_config_max_cap_failed_duplicate
[PASS] dipcoin::vault_tests::test_set_vault_config_operator
[PASS] dipcoin::vault_tests::test_set_vault_config_operator_invalid
[PASS] dipcoin::vault_tests::test_set_vault_config_status_failed_duplicate_status
[PASS] dipcoin::vault_tests::test_set_vault_config_status_success
[PASS] dipcoin::vault_tests::test_set_vault_config_vault_creating_fee
[PASS] dipcoin::vault_tests::test_set_vault_config_vault_creating_fee_failed_duplicate
[PASS] dipcoin::vault_tests::test_set_vault_config_withdrawal_filling_gas_fee
[PASS] dipcoin::vault_tests::test_set_vault_config_withdrawal_filling_gas_fee_failed_duplicate

[PASS] dipcoin::vault_tests::test_set_vault_config_withdrawal_filling_gas_fee_failed_too_high
[PASS] dipcoin::vault_tests::test_vault_max_cap_boundary
[PASS] dipcoin::vault_tests::test_withdraw_all_by_non_creator
[PASS] dipcoin::vault_tests::test_withdraw_by_creator_success
[PASS] dipcoin::vault_tests::test_withdraw_by_non_creator_loss
[PASS] dipcoin::vault_tests::test_withdraw_by_non_creator_profit
[PASS] dipcoin::vault_tests::test_withdraw_creator_share_ratio_below_minimum
[PASS] dipcoin::vault_tests::test_withdraw_direct_withdraw_not_enabled
[PASS] dipcoin::vault_tests::test_withdraw_insufficient_balance
[PASS] dipcoin::vault_tests::test_withdraw_insufficient_shares
[PASS] dipcoin::vault_tests::test_withdraw_locked
[PASS] dipcoin::vault_tests::test_withdraw_protocol_paused
[PASS] dipcoin::vault_tests::test_withdraw_user_not_exist
[PASS] dipcoin::vault_tests::test_withdraw_zero_shares
Test result: OK. Total tests: 103; passed: 103; failed: 0

Code Coverage
The code coverage data was generated using the following commands with Sui CLI version 1.61.2-homebrew :

sui move test -p contracts --coverage --skip-fetch-latest-git-deps to produce the coverage report
sui move coverage summary -p contracts --skip-fetch-latest-git-deps to view the summary

The resulting coverage report was manually filtered to include only the vault module coverage.

Module Coverage (%)

vault 87.42

Move Coverage 83.99

Changelog
2025-12-05 - Initial report
2025-12-21 - Final report
2026-01-05 - Final report

About Quantstamp
Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and
the Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in
formal verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has
worked with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked
with include Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the
World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:
Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora
Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are
not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for
the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that
Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the
extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the
use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any
output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp
disclaims all warranties, expressed implied, in connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. You agree
that access and/or use of the report and other results of the review, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE
THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation
provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to
unknown risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials
identified in the report and does not extend to the compiler layer, or any other areas beyond the programming language, or programming aspects
that could present security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor guarantee
its security, and may not be represented as such. No third party is entitled to rely on the report in any way, including for the purpose of making
any decisions to buy or sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume responsibility for
any product or service advertised or offered by a third party, or any open source or third-party software, code, libraries, materials, or information
to, called by, referenced by or accessible through the report, its content, or any related services and products, any hyperlinked websites, or any
other websites or mobile applications, and we will not be a party to or in any way be responsible for monitoring any transaction between you and
any third party. As with the purchase or use of a product or service through any medium or in any environment, you should use your best
judgment and exercise caution where appropriate.

© 2026 – Quantstamp, Inc. Dipcoin Vault

